
Corrigendum: A New, Simpler Linear-Time
Dominators Algorithm

ADAM L. BUCHSBAUM

AT&T Labs

and

HAIM KAPLAN

Tel Aviv University

and

ANNE ROGERS

University of Chicago

and

JEFFERY R. WESTBROOK

San Diego, CA

Corrigendum to ACM Trans. on Programming Languages and Systems, 20(6):1265–1296, 1998.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
E.1 [Data Structures]: Graphs and Networks; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—computations on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Compilers, dominators, flowgraphs, microtrees, path com-
pression

1. INTRODUCTION

The complexity analysis of the dominators algorithm we described in our original
paper [Buchsbaum et al. 1998] required a special link-eval data structure (defined
below), which we claimed performed m operations on an n-node, `-leaf tree in
O((m + n)α(m + `, `)) time. This claim was based on the application of a new
bottom-up disjoint set union result to the original link/eval data structure presented

Authors’ addresses: A. L. Buchsbaum, AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham
Park, NJ 07932, USA, e-mail: alb@research.att.com; H. Kaplan, School of Computer Sci-
ence, Tel Aviv University, Tel Aviv, Israel, e-mail: haimk@math.tau.ac.il; A. Rogers, Dept. of
Computer Science, University of Chicago, 1100 E 58th St., Chicago, IL 60637, USA, e-mail:
amr@cs.uchicago.edu; J. R. Westbrook, 4031 South Hempstead Cr., San Diego, CA 92116, USA,
e-mail: jwestbrook@acm.org.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0164-0925/20YY/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–5.

2 · Adam Buchsbaum et al.

by Tarjan [1979]. That application is faulty: Tarjan’s implementation of link/eval
where the operation is min does not perform set-union operations as we claimed; a
counterexample can be constructed using a simple path as the link-eval tree.

To repair the running time of our algorithm, we present a modified link-eval data
structure with the required time bound. It effects a linear-time reduction to the
case of a path and then applies an existing linear-time solution for paths [Alstrup
et al. 1999]. The path solution in turn relies on a data structure for disjoint set
union when the union tree is known in advance [Gabow and Tarjan 1985].

2. LINK/EVAL WITH BOTTOM-UP LINKING

Let T be a rooted tree with real-valued nodes. We want to maintain a forest F on
the nodes of T . Initially each node of T is a singleton tree in F . Let pT (u) denote
the parent of u in T . The link-eval data structure operations are:

link(u). Add edge {u, pT (u)} to F , making u a child of pT (u) in F .
eval(u). Let r be the root of the tree in F that contains u. Return any minimum-

valued node on the path from r to u.
update(u, a). Replace the value of u with the minimum of its current value and

a. Valid only if u is a tree root in F .

Tarjan [1979] shows how any sequence of m link-eval operations can be performed
in O((m + n)α(m + n, n)) time, where n is the number of nodes in T . In our
dominators algorithm [Buchsbaum et al. 1998] we use a slightly different variation
of eval(u), which we address in Section 3; for ease of exposition, we describe a data
structure to handle the original definitions given above.

A sequence of link, eval, and update operations has the bottom-up linking property
if no link(u) is performed before link(x) is performed for every proper descendent
x of u in T . Let ` be the number of leaves of T . We describe a data structure that
performs m operations with the bottom-up linking property in O((m+n)α(m+`, `))
time. The idea is to isolate maximal unary paths in T ; apply to them a special,
linear-time link-eval data structure that operates on paths; and use Tarjan’s [1979]
data structure on the remainder of T , which will have O(`) nodes.

2.1 Details

A unary node in a rooted tree is a node with precisely one child; a unary path
is a top-down path of unary nodes terminating at a non-unary node. See Figure
1. Form T ′ by contracting maximal unary paths in T as follows. For each such
path (u1, ..., ui) in T such that u1, ..., ui−1 are unary, u1 is the root of T or pT (u1)
is not unary, and ui is not unary (leaves are not unary), there is a node u′ in
T ′. Define s(uj) = u′ for 1 ≤ j ≤ i. Define S(u′) = {u1, ..., ui}. For v = uj

on such a path, define index(v) = j. In T ′, then, pT ′(u′) = s(pT (u1)) (with an
appropriate boundary definition to handle the root). This defines T ′. Initially,
valueT ′(u′) = valueT (ui) where i = max{index(v) : v ∈ S(u′)}, i.e., the value of
the deepest node on the path contracted into u′. Note that every node u in T is
in precisely one unary path; in the trivial case the path is the singleton node itself,
and index(u) = 1.

Let path-link, path-eval, and path-update be the corresponding operations on link-
eval structures that are restricted to act only on paths. Maintain such a structure
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Corrigendum: A New, Simpler Linear-Time Dominators Algorithm · 3

ba

c d

e f

r

u1

u2

u3

u4

v1

v2

v3

v4

w1

w2

w3

r′

b′

e′ f ′w′

v′
u′

c′
d′

a′

T T ′

Fig. 1. Left: A link-eval tree T . Maximal unary paths are circled (dotted circles). Uncircled nodes
are singleton unary paths. Right: The contracted tree T ′, with one node per unary path in T .

for each maximal unary path in T . Maintain a Tarjan link-eval structure on T ′;
call the operations on this data structure link′, eval′, and update′.

Implement link, eval, and update on T as follows.

link(u). Let j = index(u) and u′ = s(u). If j > 1 (u is not the top node on its
path) execute path-link(u) followed by update′(u′, valueT (pT (u))). If j = 1 (u is the
top node), execute link′(u′). This ensures that eval′(v′), where v′ is a descendent
of u′ in T ′, returns the proper value; it assumes the bottom-up linking property.

eval(u). Let a = path-eval(u); let u′ = s(u). If link′(u′) was previously performed,
return whichever of a and eval′(pT ′(u′)) has minimum value. Otherwise (link′(u′)
has not been performed), return a.

update(u, a). Let u′ = s(u). Perform path-update(u, a) followed by update′(u′, a).

For example, consider Figure 1 and say that all descendents of u2 have been
linked. Thus, u2 is a tree root in F , the forest corresponding to T , and u′ is a
tree root in F ′, the forest corresponding to T ′. Consider eval(w2): path-eval(w2)
returns a min-valued node among w1 and w2, and eval′(v′) (v′ = pT ′(w′)) returns
a min-valued node in T ′ among u′ and v′. By the prior operations, valueT ′(v′) is
the minimum value associated to the vi’s, and valueT ′(u′) is the minimum value
associated to u2, u3, and u4. The result of eval(w2) is thus correct.

In general, let F ′ be the forest maintained by link′/eval′/update′ that corresponds
to F . At any point in the sequence of operations, the following can be seen to be
true by induction.

(1) If u is a tree root in F , then s(u) is a tree root in F ′.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

4 · Adam Buchsbaum et al.

(2) If u′ is a tree root in F ′, then some member of S(u′) is a tree root in F .

(3) For any u′ in F ′, if u′ is a root, let r(u′) denote the deepest node in S(u′) that
is a root in F ; otherwise, let r(u′) denote the highest node in S(u′). Then

valueT ′(u′) = min{valueT (x) : x ∈ S(u′), x a descendent in T of r(u′)}.
Based on (1)–(3) and assuming bottom-up linking, we claim that the data struc-

ture is correct. That is, if the link, eval, and update operations were performed
on a vanilla Tarjan data structure, the results of the eval operations would be the
same as if they were performed as above. To see this, consider an eval(u), and let
r be the root of the tree in F that contains u in the comparable vanilla Tarjan
data structure. By (1) and (2), r′ = s(r) is the root of the tree in F ′ that contains
u′ = s(u). If r′ = u′, then u and r lie on the same unary path and link′(u′) has
not yet been performed. Thus, path-eval(u) returns the correct node. Otherwise
r′ 6= u′, in which case u and r lie on different unary paths and link′(u′) was pre-
viously performed. In this case, path-eval(u) returns some min-valued node on the
path from u to the root (call it v) of its unary path in T ; by (3), eval′(pT ′(u′))
returns some min-valued node on the path from pT (v) to r. Thus the min-valued
node in {path-eval(u), eval′(pT ′(u′))} is the correct result.

If m operations are performed on T , then O(m) operations are performed on
T ′ and the path-link-eval data structures. Alstrup et al. [1999] show how to do
the path-link-eval operations in linear time on a RAM, using Gabow and Tarjan’s
[1985] result for disjoint set union when the union tree is known in advance. The
total time is thus O((m + n)α(m + `, `)), where ` is the number of leaves in T,
because there are O(`) nodes in T ′.

3. A VARIATION OF EVAL

Our dominators algorithm [Buchsbaum et al. 1998] as well as that of Lengauer and
Tarjan [1979] use a different definition of eval(u):

eval(u). Let r be the root of the tree in F that contains u. If u = r, return
r. Otherwise, let v be the child of r on the path from r to u, and return any
minimum-valued node on the path from v to u.

It is easy to reduce this variation to the original Tarjan definitions in the general
case. Assume a data structure that implements the operations as defined in Section
2; call those operations link0, eval0, and update0. Let link, eval, and update refer to
operations on a modified structure that abstracts eval(u) as defined in this section.
Along with an underlying data structure that performs link0, eval0, and update0, we
maintain a linked list PENDING(u), initially empty, and a boolean bit LINKED(u),
initially false, with each node u ∈ T . To implement link(u), we perform the
following steps.

(1) If LINKED(pT (u)) = true, then execute link0(u); otherwise append u to
PENDING(pT (u)).

(2) Set LINKED(u) ← true.

(3) For all v in PENDING(u), remove v from PENDING(u), and execute link0(v).
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Corrigendum: A New, Simpler Linear-Time Dominators Algorithm · 5

We can then implement eval(u) and update(u, a) simply by executing eval0(u)
and update0(u, a), respectively. We see that for all v: (a) after any operation
PENDING(v) is empty whenever LINKED(v) = true; and (b) link0(v) is not
performed before LINKED(pT (v)) = true. These observations imply the following
invariant, which in turn implies the correctness of the reduction.

Invariant 3.1. After any operation, consider any node v. Let r be the root of
the tree containing v in the link-eval forest; let r0 be the root of the tree containing
v in the link0-eval0 forest. (Both forests are induced on T by the respective data
structures.)

(1) If v = r, then r = r0.
(2) If v 6= r, then r0 is the child of r on the path from r to v.

Alternatively, one could implement the data structure in Section 2 to support
directly the above variation of eval(u). In this case, the implementations of link(u)
and eval(u) handle the “off-by-one” issue of eval’s terminating below the root, and
the invariants become more complicated to describe.

4. CONCLUSION

While our original dominators algorithm can be implemented in linear time with
the revised link-eval data structure, the link-eval structure requires a RAM. Im-
plementing link-eval with bottom-up linking on a pointer machine remains open,
although it can be done if update is not required. Georgiadis and Tarjan [2004] have
devised a new dominators algorithm that runs in linear time on a pointer machine.

ACKNOWLEDGMENTS

We thank Loukas Georgiadis and Bob Tarjan for pointing out the flaw in our original
paper.

REFERENCES

Alstrup, S., Harel, D., Lauridsen, P. W., and Thorup, M. 1999. Dominators in linear time.
SIAM J. Comput. 28, 6, 2117–2132.

Buchsbaum, A. L., Kaplan, H., Rogers, A., and Westbrook, J. R. 1998. A new, simpler
linear-time dominators algorithm. ACM Trans. Prog. Lang. Syst. 20, 6, 1265–1296.

Gabow, H. N. and Tarjan, R. E. 1985. A linear-time algorithm for a special case of disjoint set
union. J. Comput. Syst. Sci. 30, 2, 209–221.

Georgiadis, L. and Tarjan, R. E. 2004. Finding dominators revisited. In Proc. 15th ACM-SIAM
Symp. on Discrete Algorithms. SIAM, Philadelphia, PA. To appear.

Lengauer, T. and Tarjan, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Prog. Lang. Syst. 1, 1, 121–141.

Tarjan, R. E. 1979. Applications of path compression on balanced trees. J. ACM 26, 4, 690–715.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

