
Methods for Optimal Text Selection

Jan P. H. van Santen1 Adam L. Buchsbaum2

1Lucent Technologies – Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974, U.S.A., jphvs@research.bell-labs.com
2AT&T Labs, 180 Park Ave., P.O. Box 971, Florham Park, NJ 07932-0971, U.S.A., alb@research.att.com

ABSTRACT
Construction of both text-to-speech synthesis (TTS) and
automatic speech recognition (ASR) systems involves us-
age of speech data bases. These data bases usually consist
of read text, which means that one has significant con-
trol over the content of the data base. Here we address
how one can take advantage of this control, by discussing
a number of variants of “greedy” text selection methods
and showing their application in a variety of examples.

1. INTRODUCTION
Both automatic speech recognition (ASR) systems
and text to speech (TTS) systems have components
that are trained on text—typically read text. Surpris-
ingly often, training text is selected without giving
much thought to optimality of the selected text. For
limited domain situations, it may very well suffice to
select randomly a subset from the domain for training
purposes. In many ASR applications, and certainly
in most TTS applications, however, the domain is
open. And, as discussed at length in [7], in open do-
main situations the issue of coverage is vital, because
by any measure differences between sub-domains are
too profound to generalize with any confidence from
one sub-domain to another. For example, [7] men-
tions that only 50 per cent of triphones occurring in
two large text corpora occurred in both corpora.

In this paper, we first define the concept of coverage
via the concept of “unit” and then describe several
techniques for optimizing coverage.

2. COVERAGE AND “UNITS.”
Text can be analyzed at many different levels, corre-
sponding to different types of unit. In ASR, an exam-
ple of a unit is a phonemic-context sensitive phone,
such as an /i/ in a /p/ /t/ context, or a sub-word
unit roughly corresponding to some phone sequence.

In TTS, duration components typically receive as in-
put feature vectors that describe the identity, iden-
tities of neighbors, and prosodic context of a given
phonetic segment. Assignment of pitch accent types
to words often involves vectors describing the lexi-
cal identity of the word in question, its location in
the phrase, and parts-of-speech tags of surrounding
words. The intonation component may use vectors
describing features associated with a syllable, includ-

ing its segmental makeup, lexical stress, and pitch
accent type of its associated word.

In each of these cases, the input domains are dis-
crete but extremely large. For example, using parts-
of-speech tags in a window of five words in combi-
nation with five location positions creates a space of
potentially one hundred million units.

Whether one should attempt to cover all units in the
domain, or only the most frequently occurring units,
depends on the number of units, the cost of train-
ing, and the cost of missing units. The latter point is
somewhat subtle. As remarked in [7], there are often
cases where the frequency distribution is extremely
uneven, but where the number of rare units is suf-
ficiently large that their combined probability mass
makes it quite likely that even a small text sample
will contain at least one rare unit. Hence, any system
has to be prepared for rare units.

But being prepared does not necessitate that all units
be included in the training sample. In TTS, for ex-
ample, many components involve rules that, to the
degree that they are accurate, allow generalizing from
seen cases to unseen cases. And in ASR, the recogni-
tion outcome is the result of several probabilistic con-
straints of which the acoustic analysis forms only one
component—other components being bi-gram mod-
els, vocabulary, and syntactic constraints. Because
of these error correction mechanisms, one may not
need good acoustic model estimates for each phone
in any context. One might only need good estimates
for frequently occurring units.

There is a risk, however, in relying too much on fre-
quencies observed in a particular corpus, because of
the instability of frequency distributions across text
corpora. We already mentioned that triphone occur-
rences differ sharply between text corpora. These
differences persist when we look at frequencies of tri-
phones that are shared between two corpora, with
typical correlations of only 0.30 or less between their
frequencies. The reason for this instability is elemen-
tary. Even if the underlying frequency distributions
are identical, the expected frequencies of most units
are small due to the unevenness of the common dis-
tribution, resulting in many observed frequencies of

zero, one, or two. Which particular units occur once
or twice in one corpus, but not in the other, has a
large chance component.

And of course, underlying frequency distributions
can never be assumed to be identical. For exam-
ple, even very large corpora (such as the Associated
Press Newswire in 1987) have units (e.g., n-phones
contained in the name “Reagan”) that for good his-
torical reasons have less chance of occurring in sim-
ilar corpora (such as the Associated Press Newswire
in 1997).

In summary, text corpora, no matter how large,
should be viewed as samples of a larger, abstractly
defined domain (e.g., the written English language).
Tying system construction too closely to a particu-
lar corpus runs the risk of neglecting units that may
prove unexpectedly frequent in new corpora. Unless
one’s system has rules that allow generalization (as
in TTS) or error correction mechanisms (as in ASR),
coverage of all units is the goal.

3. BASIC GREEDY ALGORITHM.

We now discuss algorithms for optimizing coverage.
The best-known algorithm is the greedy algorithm as
applied to the set-covering problem [3]. Consider a
set of sentences, and a parallel set that contains for
each sentence a list of diphones occurring in the cor-
responding sentence. How do we select a small set of
sentences so that their corresponding diphones con-
tain each diphone in the larger list at least once? This
problem has a well-known approximate solution in the
form of the greedy algorithm. This algorithm suc-
cessively selects sentences. The first sentence is the
sentence with the largest diphone type count; all di-
phones occurring in that sentence are removed from
the larger list. Once N sentences have been selected,
the next sentence selected is the sentence with the
largest type count of the remaining diphones.

We applied this basic algorithm for a perceptual ex-
periment, in which we wanted listeners to process the
smallest number of sentences that yet contained each
acoustic inventory element at least once [6]. Starting
with a list of over 67,440 sentences, the greedy algo-
rithm found a subset of 650 sentences with complete
coverage of all (2533) elements in the larger list.

As mentioned, it may be meaningful in training
acoustic models in ASR to optimize frequency-
weighted coverage of, e.g., triphones. The change in
the greedy algorithm is simple: instead of maximiz-
ing the type counts, one maximizes the frequency-
weighted type counts. There is an additional change
that can be made. Often having only one token
of a given triphone is not sufficient for adequate
modeling—one needs at least, say, five tokens. This
can be accomplished by associating with each tri-

phone a counter, initialized to 5, and subtracting 1
each time a sentence is selected containing that di-
phone. We found that, for example, a training set
of 15,000 names can cover (at 94 per cent frequency
weighted coverage) the triphones in 169,328 personal
names at least 5 times; random samples of 15,000
names cover only 72 per cent. The advantage of
greedy selection over random sampling increases as
the number of units decreases and the size of the
training sample (here: 15,000) relative to the domain
(here: 169,328) decreases.

Paradoxically, we found that applying weights that
are the inverse of frequencies can improve perfor-
mance in situations where complete coverage is feasi-
ble. This scheme focuses the algorithm on sentences
with rare units; in the process, the more frequent
units are picked up en passant so that the algorithm
does not have to search for additional sentences con-
taining these units. In applications of this procedure,
we obtained reductions in training text size of up to
10%.

4. FEATURE SPACES AND
SUB-VECTORIZATION.

Up to now, we have treated units as atomic. How-
ever, in many cases units are vectors. For example, in
duration prediction, input units often have the form

< /p/, IsStressed, . . . , PhraseF inal > .

Is there some way to make use of this factorial struc-
ture?

Consider applications where the feature space is
mapped on some acoustic variable, such as segmen-
tal duration. There is a set F = {1, . . . , N}, for
some N , of factors. For each i ∈ F , the factor
Fi is a set {F i

1, . . . , F
i
ζi
} of ζi = |Fi| distinct levels

or features. For example, one factor might be the
phone itself. The levels would be the set of possi-
ble phones. Another factor might be whether the
phone is stressed, and the levels would be the set
of possible stress values. The feature space F is de-
fined by F = F1 × · · · × FN . Each individual pho-
netic segment occurrence ρ corresponds to a feature
vector ~f(ρ) = (f1, . . . , fN) ∈ F , where fi ∈ Fi for
1 ≤ i ≤ N .

One way this mapping may be characterized is as
a sum of terms, each of which depends on one or
more of the factors, but typically not on all factors.
Specifically, let K be a subset of 2F such that the
duration (for example) of a feature vector (f1, . . . , fN)
can be predicted by a sum of parameters:

D(f1, . . . , fN) =
∑

I∈K

SI(fI1 , . . . , fI|I|) + µ (1)

where I = {I1, . . . , I|I|} for I ∈ K; µ is some con-

stant. In the Analysis of Variance [4], the SI terms
have no particular form, but are subject to the zero
sum constraint:

∑

fIj
∈FIj

SI(fI1 , . . . , fI|I|) = 0, 1 ≤ j ≤ |I|, ∀I ∈ K.

(2)

In sums-of-products models, the SI terms have the
form:

SI(fI1 , . . . , fI|I|) =
|I|∏

j=1

SI,Ij
(fIj

), ∀I ∈ K. (3)

Regardless of the specific form of these equations, the
SI terms in Eq. 1 allow modeling of interactions. Two
factors are said to interact when the effect of one fac-
tor (as measured by comparing two different levels
on that factor holding all other factors constant) de-
pends on other factors. A well-known example is the
effects on vowel duration of postvocalic voicing and
phrasal location: in phrase-final locations, the length-
ening effect of postvocalic voicing is much larger (on
a log scale) than in phrase-medial locations.

Not all factors interact. For example, the effects of
phrase-final lengthening are the same for stressed and
unstressed syllables, when measured on a log scale.

It is obvious that in order to estimate the interac-
tion terms from data, our training data must con-
tain all combinations of levels on the factors that
occur in a single interaction term. For example,
if F = {1, 2, 3, 4} and K = {{1, 2, 3} , {2} , {2, 4}},
then we need all combinations of factors {1, 2, 3}, and
{2, 4}, but not of {1, 2, 3, 4}, {3, 4}, and {1, 4}.
A sufficient condition for estimability of interaction
terms (more about which in the next section) is that
the training data cover the entire feature space, but it
is obviously not necessary. After all, the numbers of
estimated parameters are typically small (e.g., in the
above example assuming 5 levels per factor, we have
to estimate fewer than 200 parameters) compared to
the number of data points (typically 50 phone du-
rations per sentence). Hence, we should be able to
estimate parameters on far fewer sentences than are
required to cover the entire feature space.

We propose that in situations where one has a good
sense of which interactions should be of no concern,
the following procedure can be used:

1. Transcribe each phone in the text corpus by the
usual vector, ~f(ρ) = (f1, . . . , fN).

2. Generate from each individual vector a set of
sub-vectors, where each sub-vector corresponds
to some SI term. In the above example, the sub-
vectors would be (f1, f2, f3), (f2), and (f2, f4).

3. Proceed with the usual greedy algorithm, applied
to these sub-vectors.

This idea was applied to Mandarin Chinese [5]. It
was found that the 8,233 distinct sub-vectors occur-
ring in a data base of 15,630 sentences could be cov-
ered completely in just 427 sentences. Coverage of
the original feature space would have required thou-
sands of sentence. The training data were found to
be sufficient for parameter estimability. In fact, stan-
dard errors of estimate were quite small, due to the
even distribution of data points over parameters and
to the large ratio of observations to parameters (bet-
ter than 100:1). Statistical analysis of the data using
sums-of-products models yielded reliable parameter
estimates, and resulting predicted segmental dura-
tions were found to be quite accurate.

5. MODEL-BASED GREEDY
SELECTION.

The sub-vectorization method works well in practice
and is extremely easy to implement, but it has two
formal weaknesses. First, it is mathematically quite
possible that even when all sub-vectors of the types
(f1, f2, f3), (f2), and (f2, f4) are covered, parame-
ters of the corresponding model still cannot be esti-
mated. The reason is that for estimability one needs
the presence of some combinations of factors across
these three groups. Thus, covering all sub-vectors is
not sufficient for parameter estimability.

Second, it is not necessary either, because under the
constraints described in Eqs. 2 and 3, we do not need
all combinations of all levels of factors contained in
the interaction term.

We now describe a new algorithm that finds the small-
est number of sentences that is guaranteed to be suf-
ficient for parameter estimation.

5.1. Linear Parameter Estimability and
Design Matrices

We briefly describe here standard theory of linear es-
timation for the Analysis-of-Variance model.

A feature vector ~f(ρ) corresponding to a given pho-
netic segment occurrence ρ can be uniquely repre-
sented as a compound row vector, in which each sub-
vector encodes the level on the corresponding factor.
One way to do this is to have the vector component
corresponding to the level in the factor set equal to
1 and the remaining components equal to 0. Usually,
the last level is represented as a vector of all -1’s.
For example, for F1 = {primary stress, secondary
stress, unstressed}, primary stress is mapped onto
(1, 0)t, secondary stress onto (0, 1)t, and unstressed
onto (−1,−1)t,

The design matrix for a sentence s simply consists

of the a matrix X(s) whose rows are computed as
indicated. The design matrix for a corpus C is a
vertical stack of matrices X(s), where s ranges over
C.

If we let ~D(C) be the corresponding vector of ob-
served durations, then it is known [4] that the pa-
rameter vector ~P is estimable if and only if the ma-
trix X(C) is of full column rank, in which case the
estimate of ~P is given by:

~P =
(
X(C)tX(C)

)−1
X(C)t ~D(C) (4)

Note. The concept of design matrix cannot be used
directly for sums-of-products models. We conjecture
that it is possible to work out a similar solution using
Jacobian matrix rank [1], but we have not proven this.
In practical terms, however, we found it always to be
the case that if data are sufficient for estimating the
parameters of an Analysis-of-Variance model, then
they are also sufficient for estimating the parameters
of the corresponding sums-of-product model. But we
do not doubt that counterexamples can be found.

5.2. The Optimization Problem
The optimization problem can now be formulated as
follows: Find a subset of sentences C ′ ⊆ C such that
the corresponding design matrix still has full column
rank, and such that C ′ is of minimal cardinality.

Elsewhere [2], we provide a detailed description of
the algorithm. The algorithm is a greedy algorithm,
and starts with the sentence whose corresponding de-
sign matrix has the largest rank. Once n sentences
have been selected, for the next sentence we select the
sentence whose design matrix produces the largest in-
crease in rank when added to the stack of design ma-
trixes constructed up to that point. Thus described,
this process is extremely computationally expensive,
because it necessitates rank computations of as many
matrices as there are sentences at each step. Our
algorithm, however, performs an incremental Gram-
Schmidt orthogonalization procedure that obviates
these rank computations.

Based on experiments on a 150 MHz R4400 pro-
cessor on an SGI Challenge machine with 1 Gb of
main memory, we estimate that large data sets (e.g.,
5,000,000 sentences with each 50 phones, and 500 to-
be-estimated parameters) can be computed in a few
days of CPU time. Since this algorithm is typically
used as part of a one-time off-line training procedure,
this is not a practical problem.

The most important result obtained is that when ap-
plied to the same Mandarin Chinese data set as in
section , two sentences were found to be sufficient for
estimation of all (30) vowel parameters. Even when

the standard error of estimate is bound to be large
when so few data points are available per parame-
ter, repeated application of the selection procedure
can produce data sets that are still quite small (e.g.,
50 sentences) yet produce uniformly small standard
errors.

In summary, our intuition that for estimation of 30
parameters one should not need significantly more
than one or two 50-phone sentences proved to be cor-
rect, and the proposed algorithm is sufficiently fast
that large-scale applications are realistic.

6. CONCLUSIONS
This paper discussed methods for optimal text selec-
tion that can be used for training and assessing both
TTS and ASR systems. In our lab, we now routinely
use these methods.

The main contribution of this paper is two-fold. First,
we hope to have made researchers more aware of the
importance and feasibility of intelligent text selection
procedures. Second, the linear model-based text se-
lection procedure showed that extremely efficient text
can be selected if one (1) is willing to make strong as-
sumptions about model structure and (2) is able to
mathematically tie the model to a greedy algorithm.
In our algorithm, this tie was provided by the design
matrix, which is a very simple concept. But it seems
worth exploring if similar mathematical ties can be
discovered in entirely different, perhaps more compli-
cated types of models.

7. REFERENCES
1. D. Bamber and J. van Santen. How many parameters

can a model have and still be testable? Journal of
Mathematical Psychology, 29:443–473, 1985.

2. A. Buchsbaum and J. van Santen. Selecting training
text via greedy rank covering. In Proc. 7th ACM-
SIAM Symposium on Discrete Algorithms, pages 288–
95, 1996.

3. T. Cormen, C. Leiserson, and R. Rivest. Introduc-
tion to Algorithms. The MIT Press, Cambridge, Mas-
sachussetts, 1990.

4. C. R. Rao. Linear Statistical Inference and its appli-
cations. John Wiley & Sons, Inc., New York, 1965.

5. C. Shih and B. Ao. Duration Study for the AT&T
Mandarin Text-to-Speech System. In J. van San-
ten, R. Sproat, J. Olive, and J. Hirschberg, editors,
Progress in Speech Synthesis. Springer-Verlag, New
York, 1996.

6. J. van Santen. Perceptual experiments for diagnostic
testing of text-to-speech systems. Computer Speech
and Language, 7:49–100, 1993.

7. J. van Santen. Combinatorial issues in text-to-speech
synthesis. In Proceedings, Rhodos, Greece, 1997. Eu-
rospeech.

