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ABSTRACT

We define a general method for ranking the solutions of a
search process by associating costs with equivalence classes
of state transitions of the process. We show how the method
accommodates models based on probabilistic, discrimina-
tive, and distance cost functions, including assignment of
costs to unseen events. By applying the method to our ma-
chine translation prototype, we are able to experiment with
different cost functions and training procedures, including
an unsupervised procedure for training the numerical pa-
rameters of our English-Chinese translation model. Results
from these experiments show that the choice of cost func-
tion leads to significant differences in translation quality.

1 INTRODUCTION

Standard applications of preference scores in machine trans-
lation [3, 4, 15], and more generally for disambiguation in
language processing [8, 14], employ special-purpose train-
ing and scoring mechanisms. To gain more flexibility in
assigning costs to translations produced by a speech trans-
lation system, we abstract the counts, weights, and penal-
ties used to score a search process and provide a general
costing mechanism that is independent of the details of the
algorithms and information being applied.

An earlier version of our translation prototype lacked
scoring flexibility in two ways. First, the costs were al-
ways interpreted as negated log probabilities of a statistical
translation model. This precluded using all the available
data. In particular, it did not use examples of “incorrect”
translations, nor could it treat correctness of solutions as a
matter of degree.

Second, the particular statistical model for deriving
translations was hard-wired into the mechanisms for count-
ing events and computing and applying the costs. This
made it inconvenient to alter the model, for example to
experiment with context dependence.

To gain flexibility, we separate much of the costing mecha-
nism into a module that is independent from its application
to translation. This facilitates experimentation with vari-
ants of our translation model, and with ways of associating
costs with solutions, that are different from the standard
probabilistic approach.

A particular example is an unsupervised method for as-
sociating costs with actions in a translation model. The
model structure is defined in advance, but the numerical
costs account for a graded view of the “goodness” of a trans-
lation derivation. To do this we compute a distance metric
between a source-language sentence and the result of trans-
lating it into a target-language and back again. Cost penal-
ties associated with “irregular” events leading to incomplete
solutions are handled systematically in this framework.

In Section 2 we present the framework for associating
costs with actions and solutions of a search process. We

briefly review our translation model in Section 3 and discuss
some of the cost functions we have tried. Section 4 describes
the implementation of the costs module and the training
procedures, and Section 5 presents our results.

2 PROCESS EVENTS AND COSTS

2.1 Costed Non-deterministic Processes

We generalize our translation problem in terms of costed
non-deterministic processes. Such a process can perform
multiple input and output operations. Here, we restrict our-
selves to simple costed non-deterministic processes, which
read a string, execute a sequence of internal actions, write a
pair consisting of a string and a real number, and then halt.
A real number cost is associated with each action. The out-
put string is a solution, and the cost of that solution is the
sum of the costs for all actions prior to halting.

For translation, the input could be a sentence (or a speech
signal or word lattice), the solution a possible translation,
and the cost some measure of the distortion of meaning
effected by this translation.

Given a characterization of a simple costed non-
deterministic process, the standard search problem is to find
a minimum-cost solution. It is also often of practical im-
portance to find a solution that has a high probability of
having the lowest cost, or to find an approximate solution
with a cost “close” to the minimal cost. Sometimes we want
the N lowest-cost solutions for some integer N .

2.2 Events and Contexts

The cost of performing an action is determined by the in-
ternal state of the process before taking the action and by
the action taken. For complex applications such as transla-
tion or speech recognition, we assume that the cost depends
only on certain aspects of the state and the action taken.

We formalize this assumption by defining the cost of tak-
ing an action as a function of equivalence classes of states,
which we call contexts, and equivalence classes of actions,
which we call events. An event e in a context c forms a
choice, written as (e|c).

The sets of allowable actions from states induces sets of
allowable events for each context c in the obvious way.
Together, the events, contexts, specification of allowable
events, and cost function constitute a process cost model,
or simply a model. The costs specified by the cost function
are the model parameters; the other components constitute
the model structure.

We contrast our costed event framework to a related effort
toward providing tools for processing weighted automata
[13]. The weighted-automata tools provide algorithms for
manipulating labeled, weighted, state transition networks.
We further separate the algorithmic issues from those relat-
ing to cost manipulation. For example, the implementation
of a speech recognizer using the weighted-automata tools
would be an instance of a costed process, and the costs for
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arcs could be trained using our costed event model. Our
framework, however, can be used in conjunction with any
search process in which state transitions can be traced, re-
gardless of the algorithms being applied.

2.3 Probabilistic Model

We create a standard probabilistic model given criteria for
evaluating the utility of a solution. For example, consider
some solutions to be judged positive and others negative.
Given a set of solutions, let n+(e|c) (rsp., n−(e|c)) be the
number of times choice (e|c) was taken leading to posi-
tive (rsp., negative) solutions and n+(c) (rsp., n−(c)) be
the number of times context c was encountered for these
solutions. We then estimate costs as usual: f ′((e|c)) =
ln(n+(c)) − ln(n+(e|c)). Assuming this estimate is exact,
a minimum-cost solution results from a highest probability
sequence of events, given that the solution is positive.

2.4 Discriminative and Distance Models

We use the discriminative model to exploit information from
negative solutions. The cost function for the discriminative
model is f ′((e|c)) = ln(n−(e|c)) − ln(n+(e|c)). This esti-
mates the negated log of the likelihood ratio comparing the
probability, conditional on context c, that event e is taken
on a path leading to a positive solution as opposed to be-
ing taken on a path leading to a negative solution. (See
Dunning [7] on the application of likelihood ratios in com-
putational linguistics.)

Both the above models judge solution quality coarsely.
We have therefore experimented with another class of mod-
els that make use of an error or distance function. For the
general case, we have a function h(s, t) 7→ d, where s is
the input, t is a solution, and d is a non-negative real num-
ber. The distance function yields greater numbers for worse
solutions; it is zero for ideal solutions.

The parameters for the mean distance model [2] are
Eh(e|c), the average of h(s, t) for pairs s-t produced by a
sequence of choices including e in context c.

Note that the mean distance model does not take into ac-
count that particular choices faced by a process are choices
between events with the same context. It is also somewhat
sensitive to peculiarities of the underlying distance func-
tion. We therefore introduce the relative distance model.
Let Eh(c) be the average of h(s, t) for source-solution pairs
s-t produced by a sequence of choices including the context
c. The cost function f for the relative distance model is
defined as f(e|c) = Eh(e|c)/Eh(c). A relative distance cost
is the ratio of the expected distance for solutions involving
an event in a particular context and the expected distance
for solutions involving any allowable event for that context.
Therefore, “good” events, i.e., those that tend to reduce
the cost of a solution, have costs less than 1, whereas “bad”
events have costs greater than 1. A cost of 1 indicates that
the model is indifferent to the event, as compared to other
available choices. This provides a specific neutral value as
the cost for unseen events.

2.5 Unseen Event Costs

Our approach to deriving costs for unseen choices gen-
eralizes the notion of “backed off” likelihood estimates
[5, 10, 11]. (Clustering techniques [12] are an alternative.)

When faced with an unseen choice (e|c), we use the cost,
suitably normalized, for (e|c′), where c′ is a more general
context than c. We could also apply a similar generalization
to the equivalence class for the event e, but we have not yet
tried this in our experiments.

There are many ways of generalizing c to c′; we ex-
perimented with the following. Given a context c =
{b1, . . . , bm}, where the bis are features of state, let ci =
{b1, . . . , bi−1, bi+1, . . . , bm}, for 1 ≤ i ≤ m. We define c′

as the equivalence class of contexts c1, . . . , cm. The process
can be applied recursively.

The cost corresponding to the logical conclusion of this
process, i.e., the cost for (e0|c0) where e0 and c0 are unre-
stricted event and context equivalence classes, is the default
cost for the model. In particular, for models with relative
distance costs, the default cost is 1, as noted earlier.

3 APPLICATION TO TRANSLATION

3.1 Review of Translation Model
The experiments reported in Section 5 use a transfer-based
translation system. Monolingual analysis and generation
components analyze and generate dependency graphs like
those employed by dependency grammars [9]. The graph
nodes are labeled with words and the arcs with relation
symbols. A transfer component maps dependency graphs
with source-language words into corresponding graphs with
target-language words. Each component has an associated
model. Alshawi [1] describes relevant head machine models
and algorithms for applying them efficiently to translation.

The choices of the analysis model provide a good illus-
tration of the structure of a costed model. When a head
machine m is applied to analyze the dependents of a head
word w0, it starts with an incomplete phrase consisting only
of w0. Each state transition of m extends this phrase to the
left or right by consuming a dependent phrase. When m
stops, the phrase is considered complete. In the following
choices, w1 is a dependent of w0 under relation r (an r-
dependent of w0), and s and s′ are states of m.

• (m|w0). Machine m may construct the dependent arcs
with head w0.

• (s|m, w0). Machine m for head word w0 may start in
state s.

• (left, s′, r|m, s). In state s, machine m may construct
an arc for a left r-dependent and enter state s′.

• (right, s′, r|m, s). In state s, machine m may construct
an arc for a right r-dependent and enter state s′.

• (w1|w0, r). An incomplete arc with label r from head
w0 may be completed by selecting a dependent sub-
phrase headed by w1.

• (stop|m, s). Machine m may stop in state s.

3.2 Translation Distance Functions
Given a translated corpus, we can define a function for a
distance-based model in terms of a string distance metric d.
The distance function h of Section 2.4 would be h(s, t) =
d(t, t0), where t0 is the human translation of s found in
the corpus. This model could exploit automatically aligned
corpora of human-generated translations [3, 16].

Lacking a translated corpus, we can apply such a dis-
tance function by retranslating the target string into the
source language and measuring the distance between the
resulting string and the original source. We refer to this as
the back-translation process and note that it is completely
unsupervised. For this to be effective, the structure of the
translation model (in both directions) needs to be reason-
ably constraining; otherwise, the parameters of the transla-
tion model will tend to prefer translations that mirror the
source language structure.

For our English-Chinese air travel information applica-
tion, we did not have a hand-translated corpus. We built
the structures of the English and Chinese monolingual mod-
els, a collection of prototypical head machines for various
parts of speech, together with some head machines for id-
iosyncratic words, by hand. We also built prototype local
graph structures for bilingual transfer entries, together with
idiosyncratic entries for translation idioms in the domain,
by hand. This provided a sufficiently constraining model
for training with a back-translation process.
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3.3 Irregular Events

In our translation system, irregular situations such as miss-
ing vocabulary items and fragmentary analysis, transfer,
and generation fall outside the model structure. In the
costed process framework, we simply treat irregular events
like any other process choices and train cost parameters for
them accordingly, thus obviating the need to adjust penalty
values manually. In some experiments, we multiplied the
costs of all irregular events by a constant factor greater
than unity. This constant was chosen to prefer regular so-
lutions to irregular ones, but by automatically training the
costs of irregular events, selecting between different irregu-
lar solutions is not affected by the constant.

4 COMPUTING EVENT COSTS

4.1 Model Parameter Tables

To manipulate choice costs, we maintain a hash table H, in-
dexed by choice. For any choice (e|c), the associated record
in H, H(e|c), stores the counts/distances and cost of (e|c).

Any instance of a process induces a list of executed
choices, which we call the trace. The above implementation
allows efficient training and subsequent executions. During
training, we modify the fields stored in H appropriately for
each choice contained in a trace. During execution, H(e|c)
gives the cost of choice (e|c). If there is no such entry in H,
we can either compute a backed off cost for (e|c), or we can
use the default cost for unseen events.

Prior to execution, we compute the cost for each choice
in H. If we are using backed off costs for unseen events, we
first add to H entries for the choices with relaxed contexts
of those choices already in H. For each costing model de-
scribed above, we can then easily compute the cost for all
the choices in H in one or two passes through H.

The above implementation performs the only time-
consuming operation—cost computation—prior to execu-
tion. Cost recording during training and retrieval during
searching reduce to hash-table look-ups. Furthermore, the
implementation facilitates sharing of training data by differ-
ent cost models: the probabilistic and discriminative models
use the same training data, for example.

4.2 Training Procedures

When training, we use two hash tables: the runtime ta-
ble and the training table. The runtime table contains the
costs that the system retrieves when executing processes
during training. The training routine itself modifies the
counts/distances that are stored in the training table.

4.2.1 Supervised Training

For supervised training, we first translate a set of sen-
tences. A bilingual speaker then judges each translation
good or bad, and we record the translations and associated
scores. During training, we retranslate all the scored sen-
tences. For each source sentence σ, let τ(σ) be the cur-
rent translation of σ into the target language. If τ(σ)
matches some previously scored translation τ ′(σ), then for
each choice (e|c) in the trace of τ(σ), we increment the pos-
itive (negative) count for (e|c) in the training table if τ ′(σ)
was good (bad). This procedure is suitable for the proba-
bilistic and discriminative models.

4.2.2 Unsupervised Training

We use two unsupervised training procedures. We call the
first method fragmentation training. If a trace for a trans-
lation contains irregular events, we call the translation frag-
mented. During fragmentation training, we translate each
sentence σ into a corresponding τ(σ). If τ(σ) is not frag-
mented, then we increment the positive counts in the train-
ing table for the choices in the corresponding trace; oth-
erwise, we increment the negative counts. Furthermore, if

τ(σ) is not fragmented, we repeat the process in the reverse
direction, translating τ(σ) back into the source language.
This training procedure is suitable for the probabilistic and
discriminative models.

The second unsupervised training procedure is suitable
for the distance model. We call it a contrastive method,
because it compares the performance of two models (the
runtime model and a perturbation of the same). Dagan and
Engelson [6] describe the application of such a technique to
probabilistic classification problems.

During contrastive training, each sentence σ in the input
corpus is translated twice, into τ1(σ) and τ2(σ); τ1(σ) and
τ2(σ) are then retranslated back to the source language,
producing τ(τ1(σ)) and τ(τ2(σ)). The translations τ1(σ)
and τ(τ1(σ)) are computed using the runtime table; the
translations τ2(σ) and τ(τ2(σ)) are computed using the run-
time table some of the time and randomly chosen costs the
rest of the time. Let T1 be the combined traces of τ1(σ)
and τ(τ1(σ)); similarly define T2. Let d be a string distance
metric; let d1 = d(σ, τ(τ1(σ))) and d2 = d(σ, τ(τ2(σ))). We
increment the cumulative distances stored in the training
table for the choices in T1\T2 by d1; similarly, we increment
the cumulative distances for the choices in T2\T1 by d2.
The process also increments the occurrence counts for each
choice appropriately. The intuition is that the choices that
both traces contain did not distinguish the divergent trans-
lations, whereas the choices that were contained in only one
trace more directly led to the corresponding translation.

5 EXPERIMENTS AND RESULTS

5.1 Atis Data
Currently, our ATIS corpus is divided into a training set of
13000 sentences and a test set of 6000 sentences. The entire
training set is used by the unsupervised training procedures.
Approximately 3200 of the training sentences are scored. Of
those, approximately 1150 were matched during the super-
vised training process we report here. (800 matches are
good, and 350 are bad.) Additionally, we have hand tagged
approximately 800 training sentences to derive counts for
prepositional phrase attachment events. We include these
counts with the results of our supervised training procedure
when evaluating our “supervised system.”

5.2 Results
We performed the experiments using all of the training
methods in Section 4.2. For contrastive training, we trans-
lated each sentence five times: once using the runtime table,
and four times each using the runtime table 75% of the time
and randomly chosen costs 25% of the time, producing for
each sentence four contrastive pairings of traces. We ran
contrastive training once using an empty runtime table and
once using a runtime table populated with the supervised
training and hand-tagged data.

We translated 200 test sentences to evaluate the respec-
tive training data. Table 1 shows the results of the eval-
uations. The first column of numbers are percentages of
the test sentences that had good translations, as judged by
a bilingual speaker; the second column represents percent-
ages of the translations that preserved meaning, regardless
of syntax errors. The qualitative numbers reflect the per-
formance of the system with an empty runtime table; i.e.,
all choice costs are default, except that costs of irregular
events are high enough to prefer unfragmented solutions,
and thus the model structure drives the system. The su-
pervised numbers show the performance using supervised
training as well as the hand-tagged data and hand-coded
penalty costs. The unsupervised numbers show the perfor-
mance using contrastive training, in the context-normalized
mean distance model; we also multiplied the costs of the
irregular events by a large enough constant to prefer un-
fragmented solutions. The hybrid numbers show the per-
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Experiment
Good Meaning

Translations Preserved

Qualitative 29 71
Supervised

Probabilistic 46 82
Discriminative 52 83

Unsupervised
Empty runtime 37 71
Supervised runtime 54 83

Hybrid 56 83

Table 1. Results of evaluations on various training
data.

Qualitative

Supervised
Probabilistic

Unsupervised
Empty runtime

Supervised
Discriminative

Unsupervised
Supervised runtime

Hybrid

Figure 1. Statistically significant comparisons of
training methods, with respect to good translations.
An arc from method x to method y means that
method x outperformed method y.

formance of the system using supervised and fragmentation
training, the hand-tagged data, and the hand-coded irreg-
ular event costs, all costed under the discriminative model.

5.3 Interpretation of Data
Figure 1 depicts statistically significant comparisons among
the training methods.

While our best results exploit supervised training, the
unsupervised contrastive method does improve the perfor-
mance of the system when bootstrapped from initial su-
pervised training data. Continuing, that the qualitative
method performs so well implies that the structures of our
models already encode a great deal of knowledge about the
language. The differences between different costing models
were much greater with the stricter evaluation test (“good
translations” in Table 1); thus the methods affected trans-
lation quality more than they did preservation of meaning.
This may be partly an artifact of the ATIS domain, in which
word sense ambiguity is relatively uncommon. As we move
towards automatic learning of the model structure, we ex-
pect the differences between training methods to increase.

Finally, we have experimented with iterating the con-
trastive training method. While we do see some improve-
ment in system performance from iterating, the actual data
are not statistically significant.

6 SUMMARY AND CONCLUSION

We have presented a framework and implementation for
associating costs with actions taken by a search process; the
process choices correspond to equivalence classes of state
transitions. Three cost functions were defined, based on log
likelihoods, likelihood ratios, and distances in the solution
space. Our method treats unseen events systematically.

We then applied costed event models to automatic lan-
guage translation. Experimental results showed in particu-
lar that all three cost models outperformed a baseline model
and that the discriminative model outperformed the stan-
dard probabilistic model. Using backed off costs for unseen
events, however, did not significantly enhance performance.

The distance model provides a new approach to unsuper-
vised training of translation models.

Overall, the implementation of a general event costing
mechanism facilitated experimentation with different cost-
ing functions, abstracting this from the details of the trans-
lation task and the actual search algorithms used. Since the
use of costed event models only requires that state transi-
tions of the underlying process are traceable, the framework
is readily applicable to problems other than translation.
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