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Abstract

We present two new data structure tools—disjoint set union
with bottom-up linking, and pointer-based radix sort—and
combine them with bottom-level microtrees to devise the
first linear-time pointer-machine algorithms for off-line least
common ancestors, minimum spanning tree (MST) verifica-
tion, randomized MST construction, and computing domina-
tors in a flowgraph.

1 Introduction

We study four problems—off-line least common ancestors
(LCAs), minimum spanning tree (MST) verification, MST
construction, and computing dominators in a flowgraph—for
which gaps exist between the best known pointer-machine
and RAM algorithms, as summarized by Table 1. We
present the first linear-time pointer-machine algorithms for
these problems, solving several outstanding open questions
[9, 17, 18]. In the MST construction case, the time bound is
expected. Additionally, our algorithms are simpler than their
RAM counterparts.

A pointer machine [28] allows binary comparisons be-
tween data, arithmetic operations on data, dereferencing of
pointers, and equality tests on pointers. It does not permit
pointer arithmetic or tests other than equality on pointers and
thus is less powerful than the RAM model. Pointer machines
are powerful enough, however, to simulate functional pro-
gramming languages such as LISP and ML.

For LCAs, MST verification, and dominators, the pre-
vious pointer-machine algorithms use disjoint set union
(DSU), yielding the inverse Ackermann α terms. The cor-
responding RAM algorithms exploit the sensitivity of α to
the graph density by partitioning the graphs into small sub-
pieces, called microtrees, solving the problem on the mi-
crotrees by precomputation and table lookup, and running

the standard pointer-based algorithm on a smaller, induced
graph, which becomes dense enough for α to become con-
stant. (If m/n = Ω(log(O(1)) n), α(m,n) = O(1).) The
table lookups require a RAM. The linear-time RAM MST
construction algorithms [13, 17] do not use this framework,
but the only component of the Karger, Klein, and Tarjan ran-
domized MST algorithm [17] that up to now required a RAM
is an MST verification subroutine.

Each of the above algorithms is based on a traversal of
a spanning tree or arborescence, T . The traversal induces
a sequence of unions of the form (v, parent(v)) for vertices
v ∈ T . The algorithms restrict the unions to occur “bottom
up:” no union (v, parent(v)) is performed until all unions
have been performed in v’s subtree. Assuming this restric-
tion, we devise a simple modification to the standard pointer-
based DSU data structure, which reduces the α(m,n) term
to α(m, l), where l is the number of leaves in the union
tree. Thus, under bottom-up linking, we need not restrict
the global graph densitym/n to make α(m,n) constant. We
need only restrict the number of leaves l appropriately. We
exploit this result by partitioning T into microtrees only at
the bottom, thereby restricting the number of leaves in the
rest of T . This approach simplifies previous microtree tech-
niques, which partition all of T into microtrees.

The linear-time RAM algorithms use random access to
build and index a table that contains results of relevant com-
putations on all possible distinct microtrees. Each microtree
in the input is encoded as an integer, and a constant-time
table lookup finds its solution. We eliminate the use of ran-
dom access by identifying duplicate microtrees, computing
on each distinct microtree once, and copying the results to
the duplicates. We introduce a pointer-based radix sort to
organize microtree encodings, which lets us process the mi-
crotrees in linear time on a pointer machine.

We describe our techniques in the context of the LCA
problem, which we define in Section 2. Section 3 gives our
DSU result, motivating the restriction of microtrees to the
bottom of a tree. Section 4 gives our pointer-based radix sort
technique for processing microtrees on a pointer machine,
completing our new LCA algorithm. Sections 5 and 6 apply
all three techniques—DSU with bottom-up linking, bottom-
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Table 1: Time bounds. n is the number of vertices,m is the number of edges/arcs, and p is the number of LCA queries. α(m,n)
is the standard functional inverse of the Ackermann function.

Problem Previous Pointer-Machine Bound Previous RAM Bound
Off-line LCAs O(pα(p, n) + n) [1] O(n+ p) [16, 25]
MST Verification O(mα(m,n) + n) [27] O(n+m) [9, 18]
MST Construction O(mα(m,n) logα(m,n) + n) [7] O(n+m) [13, 17]
Dominators O(mα(m,n) + n) [20] O(n+m) [3, 15]

level microtrees, and pointer-based radix sort—to the MST
verification (and construction) and dominators problems.

2 Least Common Ancestors

Let T = (V,E) be a tree with root r, and let P ⊆ V × V
be a set of pairs of vertices of T . We wish to compute the
least common ancestor lca(x, y) for each pair {x, y} ∈ P ;
this is the off-line least common ancestors (LCAs) problem.
We assume that T is given in adjacency list format and that
associated with each v ∈ V is a list of pairs, Pv , in P that
contain v [27].

The best known pointer-machine algorithm for off-line
LCAs, given by Aho, Hopcroft, and Ullman (AHU) [1], runs
in O(pα(p, n) + n) time, where n = |V | and p = |P |.
Gabow and Tarjan’s linear-time DSU result [14] can make
the AHU LCA algorithm run in linear time on a RAM. Harel
and Tarjan [16] and Schieber and Vishkin [25] solve the
on-line LCAs problem, in which P is not given a priori, in
O(n+ p) time on a RAM.

The AHU algorithm uses DSU as follows. At any time
during the execution of the algorithm, each set corresponds
to a subtree of T . The name of a set is the root of the corre-
sponding subtree. Initially, each vertex comprises a singleton
set. The algorithm performs a depth-first search (DFS) of T .
Recall a vertex is said to be scanned if it has been completely
processed by the DFS. When the DFS backtracks through a
vertex v, for every pair {v, w} ∈ Pv such that w has al-
ready been scanned, lca(v, w) is assigned to be the result of
find(w). After processing Pv , we perform union(v, p(v)),
where p(v) is the parent of v in T . Correctness of this al-
gorithm follows from basic properties of DFS. Implement-
ing the DSU data structure using balanced linking and path
compression [29] gives the stated time bound.

Notice that the unions occur “bottom up” due to the
postorder processing: union(v, p(v)) occurs only after
union(x, v) occurs for all children x of v. In the next section,
we analyze the behavior of DSU under such a restriction.
The analysis motivates us to restrict the number of leaves in
T by removing small subtrees from the bottom of T , which
allows the DSU data structure to run in linear time. This
restriction also simplifies the application of Gabow and Tar-
jan’s technique [14] to the AHU algorithm.

3 Disjoint Set Union with Bottom-Up Linking

Let U be a set of n vertices, each initially identified with a
singleton set. The sets are subject to the standard DSU op-
erations: union(A,B,C), which unites sets A and B and
names the result C, and find(u), which returns the name of
the set containing u. Using the standard forest data struc-
ture with union-by-size and path compression, n− 1 unions
intermixed with m finds take O(mα(m,n) + n) time [29].

We can improve this time bound, given sufficient re-
strictions on the order of the unions. Previously, Gabow
and Tarjan [14] used a priori knowledge of the unordered
set of unions to implement the union and find operations in
O(m+n) time. We do not require advance knowledge of the
unions, only that their order be constrained. Other results on
improved bounds for path compression [6, 21, 23] generally
restrict the order in which finds, not unions, are performed.

The following theorem shows that requiring the unions to
“favor” a small set of vertices results in a linear time bound.
Designate l vertices to be special and the remaining n− l to
be ordinary.

Theorem 3.1 Consider n vertices such that l are special and
the remaining n − l are ordinary. Let σ be a sequence of
n − 1 unions and m finds such that each union involves at
least one set that contains at least one special vertex. Then
the operations can be performed in O(mα(m, l) + n) time.

PROOF (SKETCH): The restriction on unions ensures that
at all times while the sequence is being processed, each set
either contains at least one special vertex or is a singleton set
containing an ordinary vertex.

A standard DSU data structure, U , operates on the spe-
cial vertices. The ordinary vertices are kept separately. Each
ordinary vertex contains a pointer, initially null, that can
point to a special vertex.

Implementing the operations with this data structure is
simple: unless an ordinary vertex x forms a singleton set,
its pointer points to a special vertex y such that find(x) =
find(y). Each operation involves O(1) steps plus, possibly,
an operation on U , which contains l vertices. Let k be the
number of operations done on U . Then the total running
time is O(kα(k, l) +m+n), which is O(mα(m, l) +n) for
k = O(m). 2

We can implement the above algorithm within the frame-
work of a single DSU data structure. We weight special ver-
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tices one and ordinary vertices zero. Recall that the size of a
vertex is the sum of the weights of its descendents, including
itself. The union-by-size rule ensures that whenever a sin-
gleton ordinary set is united with a set containing special el-
ements, the ordinary vertex is made a child of the other root.
Path compressions never change leaves into non-leaves, so
each ordinary vertex is at all times either a singleton root or
a child of a special vertex, as in the proof of Theorem 3.1.
Furthermore, since the ordinary vertices have weight zero,
they do not affect the size decisions made when uniting sets.
A find on an ordinary vertex u is equivalent to a find on its
parent, which is a special vertex, just as in the proof of The-
orem 3.1.

3.1 Bottom-Up linking

Let a sequence of unions on U be described by a rooted,
undirected union tree, T , each vertex of which corresponds
to an element of U . The edges in T are labeled zero or one;
initially, they are all labeled zero. Vertices connected by a
path in T of edges labeled one are in the same set. Labeling
an edge {v, p(v)} one corresponds to uniting the sets con-
taining v and p(v). The union sequence has the bottom-up
linking property if no edge {v, p(v)} is labeled one until all
edges in the subtree rooted at v are labeled one.

Corollary 3.2 Let T be a union tree with l leaves and the
bottom-up linking property. Then n − 1 unions and m finds
can be performed in O(mα(m, l) + n) time.

PROOF (SKETCH): Let the leaves of T be classed as special
and all internal vertices classed as ordinary. Since unions
occur bottom-up, each non-singleton set always contains at
least one leaf. 2

Alstrup et al. [3] prove a variant of Corollary 3.2, with the
mα(m, l) term replaced by (l log l + m), which suffices for
their purposes. They derive the weaker result by processing
long paths of unary vertices in T outside the standard set
union data structure. We apply the standard set union data
structure directly to T ; we need only weight the leaves of T
one and the internal vertices of T zero.

3.2 Bottom-Level Microtrees

Recall the definitions from Section 2 for the LCA problem.
By Corollary 3.2, if we restrict the tree T to have few leaves,
then the AHU LCA algorithm will take only linear time. To
do this, we remove from T small subtrees, which we call mi-
crotrees, such that the remaining tree T ′ has a small number
of leaves. We then compute the least common ancestors of
pairs that are contained in a single microtree, exploiting the
limited number of microtrees and sets of query pairs within
the microtree. We compute the least common ancestors of
all the other pairs using the AHU algorithm modified so that
the DSU data structure operates only on vertices of T ′. We
will show that each part takes linear time.

We partition T by removing small subtrees that together
contain all the leaves of T , i.e., subtrees from the bottom

of T . Let Tv be the subtree of T rooted at v; let |Tv| be
the number of vertices in Tv . Let g be some parameter to
be fixed later. We define Tv to be a microtree if |Tv| ≤ g
and |Tp(v)| > g; for a vertex x ∈ Tv , micro(x) = Tv is
x’s microtree, and root(micro(x)) = v is the root of its mi-
crotree. Let T ′ be what remains of T after removing all the
microtrees. It is straightforward to compute this partition us-
ing DFS.

Each leaf in T ′ has more than g descendents in T , and
the descendents in T of two leaves in T ′ form disjoint sets,
so T ′ has O(n/g) leaves.

Section 4 presents a general technique that we can ap-
ply to compute the LCA for each pair {x, y} ∈ P such that
micro(x) and micro(y) are defined and equal, i.e., for each
pair contained in the same microtree. To compute the LCAs
for all the other pairs we use the AHU algorithm, modified as
follows. Initially each vertex not in any microtree is a single-
ton set. When we scan a vertex v, for each pair {v, w} such
that w is not in the same microtree as v and w has already
been scanned, we set lca(v, w) to be (1) find(w), if w does
not belong to any microtree or (2) find(p(root(micro(w)))),
ifw is in a microtree. When we backtrack from a vertex v not
in any microtree we perform union(v, p(v), p(v)). The cor-
rectness of the algorithm follows from the following lemma
and basic DFS properties.

Lemma 3.3 For every pair {v, w} such that v and w are in
the same microtree S, lca(v, w) in T is the same as lca(v, w)
in S. For every other pair {v, w}, lca(v, w) is the same as
lca(r(v), r(w)), where r(v) = p(root(micro(v))) or, if v is
not in any microtree, r(v) = v.

Since unions and finds are restricted to T ′ and unions oc-
cur in bottom-up order, Corollary 3.2 implies that the unions
and finds take O(pα(p, n/g) + n) time. We fix g in the next
section to make this linear.

Gabow and Tarjan [14] pioneered the use of microtrees
to produce a linear-time DSU algorithm for the special case
when the unions are known in advance. They partition an
entire tree into microtrees. Dixon and Tarjan [10] introduce
the idea of processing microtrees only at the bottom of a
tree. Alstrup et al. [3] use bottom-level microtrees to speed
the computation of dominators, which we address in Section
6. Corollary 3.2 offers a new analysis that demonstrates the
general utility of processing microtrees only at the bottom of
a tree.

4 Linear-Time, Pointer-Machine Processing of
Small Graphs

Let P be some computation on a graphG that, based only on
the structure ofG, produces an output whose components are
identified with vertices and edges (or arcs) in G. Let T (|G|)
be the time to compute P on G on a pointer machine. Let G
be a collection of instances of P , each of size no greater than
g. Let N =

∑
G∈G |G| be the total size of the instances. We

want to apply P to each G ∈ G.
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When an instance can be encoded in one computer word,
one can exploit that the number of possible distinct instances
is small compared to N . By building a table, indexed by
instance encoding, that contains the results of P for each
distinct instance, each input instance G ∈ G is solved by
a constant-time lookup into the table. Since g � N , the
table can be constructed inO(N) time and space, even when
T (g)� g. This approach, introduced by Gabow and Tarjan
[14], as well as a variant that uses memoization, requires a
RAM.

Rather than build and index a table, we identify duplicate
instances in G, compute P once for each distinct G ∈ G, and
copy the answers to the duplicates. To do so, we introduce a
pointer-based radix sort to organize instance encodings.

4.1 Building Adjacency List Encodings

Let G ∈ G be some instance; each vertex and edge in G may
containO(1) bits of extra information. We perform a DFS of
G, building for each vertex v ∈ G a linked list of neighbors
(or successors, in the directed case). Since we traverse G in
DFS order, we can build and maintain the neighbor lists via
a linked list, associating a record pointing to a neighbor list
with each vertex. We build an encoding for G by catenating
the neighbor lists for all the v ∈ G, in order by v, using the
non-DFS number 0 as a delimiter. We append the extra in-
formation in a vertex/edge to the occurrence of the respective
graph component in the encoding.

Since each encoding contains no more than 2g(g + 1)
numbers, each in the range [0, g], there are about gg2

pos-
sible encodings. Each instance G ∈ G is described by one
such encoding, implemented as a linked list requiringO(|G|)
space. The computation of all the encodings requires O(N)
time.

4.2 Identification of Duplicates via Pointer-Based
Radix Sort

To locate duplicate encodings, we sort the list of encodings
lexicographically. Using a variant of radix sort that sorts
strings of unequal length [1], a collection of keys, each a
vector of digits in the range [0, g], can be sorted in time
O(Lg +

∑
i `i), where `i is the length of the ith key and

L = maxi{`i}. Since L = O(g2), sorting the encodings
takes O(g3 +N) time.

Recall that standard radix sort proceeds in a series of
passes: the ith pass places a key into a bucket determined by
its ith rightmost digit. Short keys are implicitly left padded
with 0’s. Thus, when we reach the end of a key, we can con-
sider it sorted and append it to a DONE list. Normally, a key
is placed into a bucket using the ith digit to index a table, in
which element j points to a linked list of keys in bucket j.

All that remains is to implement the buckets using only
pointers. There are g+1 buckets, one for each vertex number
and the delimiter 0, which we arrange in a linked list B. We
identify a vertex with its associated bucket as follows. Dur-
ing the DFS of each G ∈ G, we maintain a pointer into B;

as we increment the current DFS number, we simultaneously
move the pointer into B to the next bucket. We can thus as-
sociate a pointer to bucket i with the vertex numbered i dur-
ing the DFS. Each datum of extra information contains O(1)
bits, so the corresponding bucket can be found by following
O(1) pointers from the head of B. Now, when constructing
the encodings, we use the bucket pointers instead of num-
bers as the encoding components. During the sort, we access
the bucket corresponding to each vertex by following these
pointers.

4.3 Computation of P

We now process the sorted list of encodings. For each dis-
tinct encoding, we construct a corresponding canonical in-
stance G′ and compute P on G′. For each occurrence of the
encoding, let G ∈ G be the corresponding instance. Since
G and G′ are isomorphic, we can traverse them in tandem,
adding pointers between corresponding vertices and edges.
We then assign the results of P to G using this mapping.
Note that this approach assumes that P is an off-line compu-
tation.

There can be about gg2
different encodings, so the total

time to sort the encodings and compute P for each canonical
instance is O(N +g3 +gg2T (g)). Choosing g appropriately
therefore makes the entire computation take O(N) time on
a pointer machine. In particular, for any P such that T (g)
itself is O(gg2

), choosing g = O(log1/3N) suffices.

4.4 Application to LCAs

Theorem 4.1 The off-line LCAs algorithm of Section 3.2
runs in O(n+ p) time on a pointer machine.

PROOF: We can apply the above technique to compute LCAs
for the pairs contained in microtrees in linear time on a
pointer machine when g = O(log1/3 n). Each instance is
a microtree plus the queries within the microtree; we real-
ize the queries as graph edges, marked by a bit. Setting
g = log1/3 n results in T ′ having O(n/ log1/3 n) leaves.
Since unions occur in bottom-up order, Corollary 3.2 implies
that the DSU operations, which are easily implemented on a
pointer machine, takeO(pα(p, n/ log1/3 n)+n) = O(p+n)
time. 2

The ability to recover the answers from the computation
of P on the instances in G, as we describe in Section 4.3, is
subtle yet critical. Alstrup, Secher, and Spork [4] show how
to compute connectivity queries on a tree T undergoing edge
deletions, in linear time. They partition T into bottom-level
microtrees and compute, for each vertex v in a microtree, a
bit-string that encodes the vertices on the path from v to the
root of its microtree. They show how to answer connectiv-
ity queries using a constant number of bitwise operations on
these bit-strings and applying the Even and Shiloach decre-
mental connectivity algorithm [11] to the upper part of T .

The Alstrup, Secher, and Spork algorithm [4] runs on a
pointer machine: since the connectivity queries return yes/no
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answers, they need not index tables to recover the answers.
In contrast, while their method can be extended to solve the
off-line LCAs problem in linear time on a RAM, and even to
simplify the Gabow-Tarjan linear-time DSU result [14], both
of these extensions require indexing tables to map the results
of the bitwise operations back to vertices in T .

In the next two sections, we apply the techniques of Sec-
tions 3 and 4 to the verification and construction of minimum
spanning trees and the computation of dominators.

5 Minimum Spanning Trees

5.1 Verification

Let G = (V,E) be a weighted graph, such that c(x, y) is
the weight of edge {x, y}. Let T = (V,ET ) be a spanning
tree of G. The minimum spanning tree (MST) verification
problem is to determine whether or not T is an MST of G.
For each non-tree edge {x, y} ∈ E \ ET , there is a unique
path P (x, y) between x and y in T . It is well known that
T is an MST of G if and only if c(x, y) ≥ c(u, v) for all
{u, v} ∈ P (x, y).

For any tree T , let pT (v) be the parent of v in T ; we
will drop the subscript when the meaning is clear from con-
text. Tarjan [27] shows how to determine if T is an MST of
G in O(mα(m,n) + n) time, by a procedure similar to the
AHU LCA algorithm. He introduces a link-eval data struc-
ture, which, given any tree T on real-valued vertices, main-
tains a forest F contained in the tree, subject to the following
operations. (Initially F contains no arcs.)

link(u): Add arc (pT (u), u) to F .

eval(u): Let r be the root of the tree containing u in F . If
u = r, return r. Otherwise, return any vertex x 6= r of
minimum (or maximum) value on the path from r to u.

Using standard DSU, n − 1 links and m evals on an n-
vertex tree T take O(mα(m,n) + n) time [27]. Applied to
MST verification, the value of a vertex v is c(v, pT (v)). Each
non-tree edge {x, y} is placed into a bucket associated with
lca(x, y). Then a DFS of T is performed. When backtrack-
ing through vertex v, for each {x, y} ∈ bucket(v), eval(x)
(rsp., eval(y)) returns the weight of the maximum weight
edge on P (x, v) (rsp., P (y, v)). It thus suffices to compare
c(x, y) to eval(x) and eval(y). Finally, link(v) is performed.

As with LCAs, note that the links, and hence the unions,
occur in bottom-up order. We cannot apply our microtree
technique directly to reduce the running time of Tarjan’s al-
gorithm, however, because the edge weights require more
than O(1) bits each and hence preclude an efficient encod-
ing as required by Section 4.1.

Dixon, Rauch, and Tarjan (DRT) [9] and King [18] pro-
vide linear-time MST verification algorithms on a RAM.
Both require an LCA computation. DRT replaces each non-
tree edge {x, y} such that x and y are not related with edges
{x, lca(x, y)} and {y, lca(x, y)}, both of cost c(x, y). For

each non-tree edge {u, v}, therefore, we may assume that u
is a proper ancestor of v.

DRT then partitions all of T into microtrees of size no
more than g and replaces non-tree edges with edges whose
endpoints are either in the same microtree or else connect
roots of different microtrees. They verify T in linear time,
using Tarjan’s verification algorithm on the subtree induced
by the microtree roots and a result from Komlós [19], which
we describe below, to process the microtrees.

We can use bottom-level microtrees to simplify the
DRT algorithm. Any replacement edge {u, v} such that,
(1) u and v are in the same microtree or, (2) both u
and v are not in microtrees, remains unchanged. Other-
wise, letting rv = root(micro(v)), we replace {u, v} with
{rv, v} and {u, p(rv)}, each of cost c(u, v). We check that
c(p(rv), rv) ≤ c(u, v); otherwise T is not an MST. T is then
an MST of G if and only if T ′ and all the microtrees are
MSTs of the corresponding induced subgraphs [9].

Duplicate replacement edges of the form {u, p(rv)} add
O(m) edges to T ′. Since Tarjan’s MST verification algo-
rithm orders links bottom up, Corollary 3.2 shows that it
takes O(n+m) time to verify T ′, if g = log1/3 n.

To verify the microtrees, we use a result of Komlós [19],
as do DRT and King. Komlós’ result states that there is a de-
cision tree D, the vertices of which determine comparisons
of edge costs, that will determine if a given tree T ∗ is an MST
of a graph G∗ having at most g vertices and e ≤ g2/2 edges.
Furthermore, D has depth O(e) and 2O(e) edges and can
be constructed in g32O(g2) time on a pointer machine. We
eliminate duplicate replacement edges of the form {rv, v}
by scanning rv’s neighbor list, keeping the minimum cost
edges, so each microtree’s induced graph has at most g2/2
edges. We can thus apply the technique of Section 4 to com-
pute the decision trees for all the microtrees inO(n+m) time
on a pointer machine, if g = O(log1/3 n). To verify each mi-
crotree, we need only traverse its decision tree, which takes
linear time.

Theorem 5.1 We can determine if T is an MST of G in
O(n+m) time on a pointer machine.

5.2 Construction

The only part of the randomized linear expected time MST
algorithm of Karger, Klein, and Tarjan [17] that up to now
could not be implemented on a pointer machine was the veri-
fication of MSTs. Theorem 5.1 thus allows randomized MST
construction to be performed in linear expected time on a
pointer machine. The issue of a deterministic, comparison-
based, linear-time MST algorithm remains open.

6 Dominators

A flowgraph is a directed graph G = (V,A, r) with a distin-
guished start vertex r = root(G) ∈ V , such that there is a
path from r to each vertex in V . Vertex w dominates vertex
v if every path from r to v includes w; w is the immediate
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dominator of v, denoted w = idom(v), if (1) w dominates
v, and (2) every other vertex x that dominates v also domi-
nates w. Every vertex in a flowgraph has a unique immediate
dominator [2, 22].

Finding immediate dominators in a flowgraph is an el-
egant problem in graph theory, with fundamental appli-
cations in global flow analysis and program optimization
[2,8,12,22]. Lengauer and Tarjan’s [20]O(mα(m,n))-time
algorithm capped a long line of successive improvements
[2, 22, 24, 26] (n = |V |, and m = |A|). Harel [15] claimed a
linear-time dominators algorithm, but careful examination of
his abstract reveals problems with his arguments. Alstrup et
al. [3] detail some of those problems and resolve them using
powerful bit-manipulation based data structures.

We describe the Lengauer-Tarjan algorithm below and
apply our techniques to devise a new linear-time dominators
algorithm. Ours is simpler than the algorithm of Alstrup et
al. [3] and is the first that can be implemented on a pointer
machine. We have implemented a RAM version of our al-
gorithm. Experimental results show that the constant factors
are low; we report these results in a separate paper [5].

6.1 Lengauer-Tarjan (LT)

LetD be a DFS tree ofG, rooted at r. We sometimes refer to
a vertex x by its DFS number; in particular, x < y means that
x’s DFS number is less than y’s. Let w ∗→ v (rsp., w +→ v)
denote that w is an ancestor (rsp., proper ancestor) of v inD;
each can also denote the actual tree path.

Let P = (u = x0, x1, . . . , xk−1, xk = v) be a path in G.
Lengauer and Tarjan [20] define P to be a semi-dominator
path (abbreviated sdom path) if xi > v, 1 ≤ i ≤ k − 1. An
sdom path from u to v thus avoids all tree vertices between u
and v. The semi-dominator of vertex v is semi(v) = min{u |
there is an sdom path from u to v}.

Lengauer and Tarjan [20] traverse D in reverse DFS or-
der to compute semi(v) for all v ∈ V . From the semi-
dominators, they then compute the immediate dominator
for each vertex. They first prove that the following proce-
dure computes semi-dominators [20, Thm. 4]. The link-eval
data structure uses semi(v) as the value of vertex v; initially
semi(v)← v.

For v ∈ V in reverse DFS order do
For (w, v) ∈ A do

u← eval(w)
semi(v)← min{semi(u), semi(v)}

done
link(v)

done

Additional steps then resolve the immediate dominators,
based on the semi-dominators. Note that links occur bottom-
up. We cannot, however, apply our techniques directly to
linearize Lengauer-Tarjan, because, similarly to the edge
weights in MST verification, the semi-dominator values that

can possibly be assigned to vertices in a microtree are in the
range [1, n], precluding an efficient representation of a mi-
crotree as required by Section 4.1.

Harel [15] presents a method to restrict the range of semi-
dominator values for vertices in a microtree. He then ap-
plies Gabow-Tarjan table lookup techniques [14] to process
links and evals on microtrees. In short, he applies the stan-
dard Lengauer-Tarjan algorithm to the whole graph, speed-
ing links and evals with microtrees. Alstrup et al. [3] correct
problems in Harel’s abstract, using Fredman and Willard’s
Q-heaps [13], which require a RAM, to manage the mi-
crotrees. They too use bottom-level microtrees, but they treat
long paths of unary vertices specially to derive a weaker ver-
sion of Corollary 3.2.

Our approach, on the other hand, is to determine for each
vertex whether its idom is in its microtree and if so, the idom
value. We then use the standard Lengauer-Tarjan algorithm
on the rest of D, which we restrict by bottom-level partition-
ing to have few leaves, thereby speeding the algorithm by
Corollary 3.2.

To summarize, Harel [15] and Alstrup et al. [3] take
a purely data-structures approach, leaving the Lengauer-
Tarjan algorithm unchanged but employing sophisticated
new data structures to improve its running time. We modify
the Lengauer-Tarjan algorithm so that, although it becomes
slightly more complicated, simple and standard data struc-
tures suffice to implement it.

6.2 Linear-Time Dominators

As in Section 3.2, our algorithm for dominators removes
small microtrees from the bottom of D. We process vertices
in the microtrees using the technique of Section 4. We then
apply the Lengauer-Tarjan paradigm to the rest of D. Corol-
lary 3.2 shows that the links and evals take only linear time.
The full details are available separately [5]; we summarize
them below.

We extend the definitions for microtrees given in Section
3.2 so that every vertex is in a microtree. If |Tv| ≤ g and
|Tp(v)| > g, then Tv is a non-trivial microtree. If |Tv| > g,
then {v} itself forms a singleton, trivial microtree. (No pre-
computation as described in Section 4 is performed on trivial
microtrees.) Otherwise, v is a non-root vertex in a non-trivial
microtree. The definitions of micro(v) and root(micro(v))
extend easily.

We define P = (u = x0, x1, . . . , xk−1, xk = v)
to be an external dominator path (abbreviated xdom path)
if P is an sdom path and x0, . . . , xk−1 6∈ micro(v).
An external dominator path is simply a semi-dominator
path that resides wholly outside the microtree of the tar-
get vertex (until it hits the target vertex). The external
dominator of vertex v is xdom(v) = min{{v} ∪ {u |
there is an xdom path from u to v}}. Note that for any ver-
tex v that forms a singleton microtree, xdom(v) = semi(v).

We define P = (u = x0, x1, . . . , xk−1, xk = v) to be a
pushed external dominator path (abbreviated pxdom path) if
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xi ≥ root(micro(v)), 1 ≤ i ≤ k − 1. Since non-trivial mi-
crotrees occur only at the bottom of D, a pxdom path cannot
exit and re-enter micro(v). To do so would require follow-
ing a back arc to a proper ancestor of root(micro(v)). A
pxdom path to v is thus (a) an xdom path outside micro(v)
catenated with (b) a path inside micro(v). Either (a) or (b)
may be null. The pushed external dominator of vertex v is
pxdom(v) = min{u | there is a pxdom path from u to v}.
Since the arc (pD(root(micro(v))), root(micro(v))) cate-
nated with the tree path root(micro(v)) ∗→ v forms a pxdom
path to v, pxdom(v) 6∈ micro(v).

Lemma 6.1 For any v that forms a singleton microtree,
pxdom(v) = semi(v).

PROOF (SKETCH): Let P be a pxdom path to v. Since
pxdom(v) is the minimum start node among all such paths,
we can assume without loss of generality that v occurs only
as the last vertex in P . Therefore, if micro(v) = {v}, P is a
semi-dominator path. 2

We also use the following facts from Lengauer and Tar-
jan [20] to prove the correctness of our algorithm.

Lemma 6.2 (LT Lemma 1) If v ≤ w then any path from v
to w in G must contain a common ancestor of v and w in D.

Lemma 6.3 (LT Lemma 4) For any v 6= r, idom(v) ∗→
semi(v).

Lemma 6.4 (LT Lemma 5) Let w, v satisfy w ∗→ v. Then
w
∗→ idom(v) or idom(v) ∗→ idom(w).

Lemma 6.5 (LT Theorem 2) Let w 6= r. Suppose every u
for which semi(w) +→ u

∗→ w satisfies semi(u) ≥ semi(w).
Then idom(w) = semi(w).

Lemma 6.6 (LT Theorem 3) Let w 6= r, and let u be a ver-
tex for which semi(u) is minimum among vertices u satis-
fying semi(w) +→ u

∗→ w. Then semi(u) ≤ semi(w) and
idom(u) = idom(w).

The following lemma is analogous to Lemma 6.3.

Lemma 6.7 idom(v) 6∈ micro(v)⇒ idom(v) ∗→ pxdom(v).

PROOF: Let u = pxdom(v). As observed above, u 6∈
micro(v). By definition of pxdom, there is a path from u to
v that avoids all vertices (other than u) on the tree path u ∗→
pD(root(micro(v))). Therefore, if idom(v) 6∈ micro(v),
idom(v) cannot lie on that tree path. 2

Our dominators algorithm proceeds roughly as follows.
We compute a DFS tree D of G and partition D into mi-
crotrees. Using the technique of Section 4, we determine for
each v if idom(v) ∈ micro(v) and, if so, determine the ac-
tual value idom(v). We then compute pxdom(v) for all v. In
reverse DFS order, based on pxdom(v) and whether or not

idom(v) ∈ micro(v), we compute idom(v) directly or de-
termine an ancestor u of v such that idom(v) = idom(u).
The computation and use of pxdoms essentially applies the
Lengauer-Tarjan algorithm to the subtree D′ of D consisting
of the trivial microtree roots. Since D′ has O(n/g) leaves,
the links and evals take linear time, by Corollary 3.2.

6.3 Computing Internal Dominators

Let T be a microtree. Let G(T ) be the subgraph of G in-
duced by vertices of T . Let aug(T ) be the graph G(T ) plus
(1) a new vertex t = root(aug(T )) and (2) a blue arc (t, v)
for each v ∈ T such that there exists an arc (u, v) for some
u 6∈ T . Vertex t represents the contraction ofG\T , ignoring
all arcs that exit T .

We define the internal immediate dominator of ver-
tex x, iidom(x), to be the immediate dominator of x in
aug(micro(x)). We can compute the iidoms for all vertices
using the technique of Section 4. The following two lem-
mas show how to determine from iidom(v) if idom(v) ∈
micro(v) and, if so, the value of idom(v).

Lemma 6.8 Let T = micro(x) and t = root(aug(T )). Then
iidom(x) 6= t⇒ idom(x) = iidom(x).

PROOF (SKETCH): Let y = iidom(x) and z = idom(x) such
that y 6= t and y 6= z. If z < y, then in the full graph G,
there exists a path P from z to x that avoids y, and from P
we can derive a path P ′ in aug(T ) from some z′ ∈ {t, z}
to x that avoids y, contradicting the assumption that y =
iidom(x). If y < z, then there is a path P in aug(T ) from y
to x that avoids z. By hypothesis, y 6= t, so P contains no
blue arcs. Therefore, P is also a path inG, contradicting that
z = idom(x). 2

Lemma 6.9 Let T = micro(x) and t = root(aug(T )). Then
iidom(x) = t⇒ idom(x) 6∈ micro(x).

PROOF (SKETCH): Suppose idom(x) = z ∈ micro(x) but
iidom(x) = t. Then there is a path P in aug(T ) from t to x
that avoids z. From P we can demonstrate a similar path in
the original graph, contradicting the claim that z = idom(x).
2

6.4 Computing Pushed External Dominators

To compute pxdoms, we process microtrees T in reverse
DFS order, as follows. Initially, label(v) ← v, and label(v)
is the value for vertex v in the link-eval data structure. Let
EN(v) = {x | (x, v) ∈ A, x 6∈ micro(v)} be the vertices
outside micro(v) with arcs to v.

1. For v ∈ T :

(a) B = {label(x) | x ∈ EN(v)};
(b) C = {label(eval(pD(root(micro(x))))) |

x ∈ EN(v), x 6 ∗→ v};
(c) label(v)← min {{v} ∪B ∪ C}.
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2. For v ∈ T , push to v. Let Y be the set of all vertices in
T from which there is a path to v consisting only of arcs
inG(T ). Set label(v)← miny∈Y {label(y)}. (This can
be done by computing strongly connected components
(SCCs) and processing them in topological order.)

3. If T is a trivial microtree, then link(root(T )).

Lemma 6.10 Upon termination of the above procedure,
label(v) = pxdom(v) for all v.

PROOF (SKETCH): Consider the processing of a microtree
T , and assume by induction that all vertices in microtrees
that precede T in reverse DFS order are correctly labeled by
their pxdoms. For any v ∈ T , we show that after Step 2,
label(v) ≤ pxdom(v) and pxdom(v) ≤ label(v).

Let pxdom(v) = w, and consider any pxdom path P
from w to v. Let (y, x) be the arc in P that crosses into
T ; i.e., y 6∈ T , and x ∈ T . Let T ′ = micro(y). Let z be the
least vertex in P on the tree path lca(v, y) ∗→ y. The prefix
of P from w to z is a semi-dominator path to z. If z ∈ T ′,
then from P we can derive a pxdom path from w to y, so
label(y) ≤ w by induction. Otherwise, z 6∈ T ′; in this case,
label(eval(pD(root(micro(y))))) ≤ w by induction. Thus,
label(x) ≤ w after Step 1, and label(v) ≤ w = pxdom(v)
after Step 2.

Conversely, for any x ∈ T such that there is a path in
G(T ) from x to v, consider any y ∈ EN(x); by induction
there is a pxdom path P ′ from label(y) to y. We can aug-
ment P ′ into a pxdom path to v, using arc (y, x) and the
path in G(T ) from x to v, so pxdom(v) ≤ label(y). Sim-
ilarly, if y 6 ∗→ v, let z = eval(pD(root(micro(y)))); by in-
duction there is a pxdom path P ′′ from label(z) to z, and
we can augment P ′′ into a pxdom path to v, using tree path
z
∗→ y, arc (y, x), and the path in G(T ) from x to v. Thus,

pxdom(v) ≤ label(z). Therefore, pxdom(v) ≤ label(v) af-
ter Step 2. 2

Pxdoms are non-increasing along paths inside a mi-
crotree. We thus perform evals only on parents of microtree
roots in Algorithm IDOM (see Figure 1): the pxdom pushing
in Step 2 effectively substitutes for evals on vertices inside
microtrees.

6.5 Computing Dominators

To complete our algorithm, we rely on the following.

Lemma 6.11 For any v, there exists a w ∈ micro(v) such
that

1. w ∗→ v,

2. pxdom(v) = pxdom(w),

3. pxdom(w) = semi(w), and

4. iidom(w) = root(aug(micro(w))).

PROOF (SKETCH): The proof proceeds as follows. We first
find an appropriate vertex w on tree path root(micro(v)) ∗→
v. We show that semi(w) = pxdom(v) and pxdom(w) =
pxdom(v). This resolves postulates (1)–(3). Finally, we
prove that idom(w) 6∈ micro(x), which implies postulate (4)

Let x = pxdom(v), and consider the pxdom path P from
x to v. Let w be the least vertex in P on the tree path
root(micro(v)) ∗→ v. The prefix P ′ of P from x to w must
be a semi-dominator path. Otherwise, there is some y < w
on P ′; by definition of pxdom(v), y ∈ micro(x). Applying
Lemma 6.2 to y and w yields a z on P ′ such that z +→ w
and z ∈ micro(v). This contradicts the assertion that w
is the least vertex in P on tree path root(micro(v)) ∗→ v.
Therefore semi(w) ≤ x. If semi(w) < x, however, then
pxdom(v) ≤ pxdom(w) ≤ semi(w) < x. Thus, pxdom(v) =
pxdom(w) = x, and pxdom(w) = semi(w).

Since pxdom(w) 6∈ micro(w), pxdom(w) = semi(w)
implies that semi(w) 6∈ micro(w). Thus, by Lemma 6.3,
idom(w) 6∈ micro(w), and by Lemma 6.8, iidom(w) =
root(aug(micro(w))). 2

Lemma 6.12 Let w, v be vertices in a microtree T such that

1. w ∗→ v,

2. pxdom(w) = pxdom(v), and

3. iidom(v) = iidom(w) = root(aug(T )).

Then idom(v) = idom(w).

PROOF (SKETCH): Condition (3) and Lemma 6.9 imply that
idom(v), idom(w) 6∈ T . Thus, by Lemma 6.4, idom(v) ≤
idom(w). If idom(v) < idom(w), then there is a path P
from idom(v) to v that avoids idom(w). P contains a semi-
dominator subpath P ′ from some y < idom(w) to some x >
idom(w) such that x ∗→ v. If x ∈ idom(w) +→ w, then
idom(w) ≤ y. If x ∈ w

∗→ v, then pxdom(v) ≤ y <
pxdom(w). (By Lemma 6.7, idom(w) ≤ pxdom(w).) So no
such P ′ can exist. 2

We can now compute idoms by Algorithm IDOM, given
in Figure 1. For each v ∈ D, IDOM either computes idom(v)
or determines a proper ancestor u of v such that idom(v) =
idom(u). IDOM uses a second link-eval data structure, with
pxdoms as vertex values. At the beginning of IDOM, no links
have been done.

Theorem 6.13 Algorithm IDOM correctly assigns immedi-
ate dominators.

PROOF (SKETCH): Assigning idom(v) to be iidom(v) if
iidom(v) ∈ micro(v) is correct, by Lemma 6.8. Assume then
that iidom(v) 6∈ micro(v), and thus idom(v) 6∈ micro(v) by
Lemma 6.9.

Consider the processing of vertex v in bucket(u), and as-
sume first that pxdom(v) = semi(v) = u. Let u′ be the
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Algorithm IDOM
For v ∈ D in reverse DFS order do

Process(v)
done.
For u ∈ D such that {u} is a trivial microtree,

in reverse DFS order do
Process(bucket(u))
link(u)

done.

Process(v)
If iidom(v) ∈ micro(v) then

idom(v)← iidom(v)
else

add v to bucket(pxdom(v))
endif.

Process(bucket(u))
For v ∈ bucket(u) do

If u = pD(root(micro(v))) then
z ← v

else
z ← eval(pD(root(micro(v))))

endif.
If pxdom(z) = u then

idom(v)← u
else

idom(v) = idom(z)
endif.

done.

Figure 1: Algorithm IDOM.

child of u on tree path u
+→ v. We claim that z is the

vertex on tree path u′
∗→ v with minimum semi and that

pxdom(z) = semi(z). Assuming that this claim is true, if
pxdom(z) = u, then by Lemma 6.5 idom(v) = semi(v) = u,
and if pxdom(z) < u, then by Lemma 6.6 idom(v) =
idom(z).

Observe that for any w ∈ micro(v) such that w ∗→
v, semi(v) = pxdom(v) ≤ pxdom(w) ≤ semi(w). If
u = pD(root(micro(v))), then u′ = root(micro(v)), z =
v, and the claim holds. On the other hand, if u

+→
pD(root(micro(v))), then z = eval(pD(root(micro(v)))) is
the vertex on the tree path P = u′

∗→ pD(root(micro(v))) of
minimum pxdom. The claim holds, since (1) pxdom(u′) ≤
u = pxdom(v), and (2) pxdom(y) = semi(y) for all y ∈ P
(by Lemma 6.1).

In the case that pxdom(v) 6= semi(v), we can apply
Lemmas 6.11 and 6.12 to find a w ∈ micro(v) such that
w
∗→ v, pxdom(v) = pxdom(w) = semi(w), and idom(v) =

idom(w). Thus, IDOM places v and w into the same bucket,
and since IDOM computes idom(w) correctly (as above), it
also computes idom(v) correctly. 2

6.6 Analysis

Theorem 6.14 Algorithm IDOM can be implemented on a
pointer machine in O(n+m) time.

PROOF: Computation of iidoms can be implemented on a
pointer machine in linear time, for g = O(log1/3 n), by
the technique in Section 4. Excluding the time to perform
the O(n) links and O(m) evals, the computation of pxdoms
and idoms takes O(n+m) time, including time to compute
SCCs.

Consider the subtree T of D induced by the trivial mi-
crotree roots. All the links and evals are performed on ver-
tices of T . T has O(n/g) = O(n/ log1/3 n) leaves. The
links are performed bottom-up, due to the reverse-DFS pro-
cessing order. By Corollary 3.2, the link-eval time is thus
O(mα(m,n/ log1/3 n) + n) = O(n+m). 2

7 Conclusion

We have presented two new tools for designing efficient al-
gorithms on pointer machines: DSU with bottom-up link-
ing, and pointer-based radix sort processing of small graphs.
We have combined these tools with bottom-level microtrees
to produce the first linear-time pointer-machine algorithms
for off-line LCAs, MST verification, randomized MST con-
struction, and computing dominators in a flowgraph. Our
algorithms are simpler than the corresponding RAM algo-
rithms. We have implemented a RAM version of our domi-
nators algorithm. Experimental results, which we report sep-
arately [5], show that it has low constant factors.
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