
Algorithmic Aspects in Speech Recognition: An

Introduction

Adam L. Buchsbaum

AT&T Labs, Florham Park NJ, U.S.A.

and

Raffaele Giancarlo

Universitá di Palermo, Palermo, Italy

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036,

USA, Tel: (212) 869-7440

Speech recognition is an area with a considerable literature, but there is little discussion of the

topic within the computer science algorithms literature. Many computer scientists, however, are
interested in the computational problems of speech recognition. This paper presents the field of
speech recognition and describes some of its major open problems from an algorithmic viewpoint.
Our goal is to stimulate the interest of algorithm designers and experimenters to investigate the

algorithmic problems of effective automatic speech recognition.

Categories and Subject Descriptors: I.2.7 [Natural Language Processing]: Speech Recognition

and Synthesis—Algorithms

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: automata theory, graph searching

1. INTRODUCTION

Automatic recognition of human speech by computers has been a topic of research
for more than forty years (paraphrasing Rabiner and Juang [1993]). At its core,
speech recognition seems to require searching extremely large, weighted spaces, and
so naturally leads to algorithmic problems. Furthermore, speech recognition tasks
algorithm designers to devise solutions that are not only asymptotically efficient—to

The work of Giancarlo was partially done while he was a Member of Technical Staff at AT&T

Bell Laboratories and was supported thereafter by AT&T Labs.
Authors’ addresses: Adam L. Buchsbaum, AT&T Labs, 180 Park Ave., Florham Park NJ 07932,
U.S.A., alb@research.att.com; Raffaele Giancarlo, Dipartimento di Matematica ed Applicazioni,
Universitá di Palermo, Via Archirafi 34, 90123 Palermo, Italy, raffaele@altair.math.unipa.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM

Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · A. L. Buchsbaum and R. Giancarlo

handle very large instances—but also practically efficient—to run in real time. We
find little if any coverage of speech recognition in the algorithms literature, however.
A sizable speech recognition literature does exist, but it has developed in a separate
community with its own terminology. As a result, algorithm designers interested
in the problems associated with speech recognition may feel uncomfortable. Such
potential researchers, however, benefit from a lack of preconceptions as to how
effective (that is, accurate, robust, fast, etc.) speech recognition should be realized.

We aim in this paper to summarize speech recognition, distill some of the current
major problems facing the speech recognition community, and present them in terms
familiar to algorithm designers. We describe our own understanding of speech
recognition and its associated algorithmic problems. We do not try to solve the
problems that we present in this paper; rather we concentrate on describing them
in such a way that interested computer scientists might consider them.

We believe that speech recognition is well suited to exploration and experi-
mentation by algorithm theorists and designers. The general problem areas that
are involved—in particular, graph searching and automata manipulation—are well
known to and have been extensively studied by algorithms experts. While some
very tight theoretical bounds and even very good practical implementations for
some of the specific problems (e.g., shortest path finding and finite state automata
minimization) are already well known, the manifestations of these problems as they
arise in speech recognition are so large as to defy straightforward solutions. The
result is that most of the progress in speech recognition to date is due to clever
heuristic methods that solve special cases of the general problems. Good character-
izations of these special cases, as well as theoretical studies of their solutions, are
still lacking, however. There is much room for both experiments in characterizing
various special cases of general problems and also for theoretical analysis to provide
more than empirical evidence that deployed algorithms will perform in guaranteed
manners. Furthermore, practical implementations of any algorithms are critical
to the deployment of speech recognition technology. The interested algorithm ex-
pert, therefore, has a wide range of stimulating problems from which to choose, the
solutions of which are not only of theoretical but also of practical importance.

Although this paper is not a formal survey, we do introduce the dominant
speech recognition formalisms to help algorithm designers understand that liter-
ature. While we want to consider speech recognition from as general a perspective
as possible, for sake of clarity as well as space we have chosen to present the topic
from the dominant viewpoint found in the literature over the last decade or so—
that of maximum likelihood as the paradigm for speech recognition. We cannot
stress enough that while reading this paper, one should not assume that this is in
fact the correct way to address speech recognition. While the maximum-likelihood
paradigm has found recent success in some recognition tasks, it is not clear that
this model will be the best one over the long term.

In Section 2, we informally introduce some of the notions behind speech recog-
nition. In Section 3, we formalize these ideas and state mathematically the goal of
speech recognition. We continue in Section 4 by introducing hidden Markov models
and Markov sources for modeling the various components of a speech recognition
system. In Section 5, we outline the Viterbi algorithm, which solves the main equa-
tion presented in Section 3 using hidden Markov models. In Section 6, we present

Algorithmic Aspects in Speech Recognition: An Introduction · 3

Signal
Processing

Phonetic
Recognition

Word
Recognition

Task
Recognition

Speech

Acoustic

Models

Lexicon

Grammar Text

Feature vector lattice

Phone lattice

Word lattice

Fig. 1. Block diagram of a speech recognizer. Input speech is digitized into a sequence of feature
vectors. An acoustic-phonetic recognizer transforms the feature vectors into a time-sequenced

lattice of phones. A word recognition module transforms the phone lattice into a word lattice,
with the help of a lexicon. Finally, in the case of continuous or connected word recognition, a
grammar is applied to pick the most likely sequence of words from the word lattice.

the A∗ algorithm, originally developed by the artificial intelligence community, and
a related general optimization paradigm for searching large, weighted graphs and
discuss how these can be used in speech recognition. In Section 7, we describe an-
other approach to speech recognition, based on finite-state transducers. In Section
8, we discuss determinization and minimization of weighted lattices and automata,
computational problems that are common to the two approaches (hidden Markov
models and finite-state transducers). Finally, we conclude with some discussion
in Section 9. Throughout the paper, we introduce relevant research areas that we
think will be interesting to algorithm experts as well as critical to the advancement
of automatic speech recognition. We summarize these in Appendix A. Appendix
B gives pointers to some relevant sources of code, data, etc. Appendix C provides
a glossary of abbreviations used throughout the paper.

2. AN INFORMAL VIEW OF SPEECH RECOGNITION

Speech recognition is the process of reconstructing the text of a spoken sentence
from the continuous acoustic signal induced by the associated utterance. A speech
recognizer usually operates in phases, as shown in Figure 1; Pereira and Riley [1997]
refer to this pipeline as the recognition cascade. By means of signal processing, the
acoustic waveform is first transformed into a sequence of discrete observations over
some unbounded alphabet F . We call the sequence of discrete observations the
observation or input sequence. Its symbols, referred to as feature vectors, are de-
signed to preserve relevant acoustic information from the original signal; in the most

4 · A. L. Buchsbaum and R. Giancarlo

general setting, the feature vectors will also have a probability distribution associ-
ated with them. (It is also possible to consider continuous, rather than discrete,
observations, and we discuss this issue briefly in Section 4.1.) We have chosen to
focus on the later computational aspects of processing this discrete sequence. While
the signal processing and acoustics issues are equally important, they are beyond
the scope of this paper. Rabiner and Juang [1993] give an extensive treatment of
how the transformation from the acoustic signal to a sequence of feature vectors is
obtained.

Because different users, or the same user at different times, may utter the same
sentence in different ways, the recognition process is stochastic. At a very high
level, we can divide the speech recognition area into two branches: isolated word
recognition (IWR) and continuous speech recognition (CSR).

In IWR, the recognizer takes as input the observation sequence of one word at
a time (spoken in isolation and belonging to a fixed dictionary) and for each input
word outputs, with high probability, the word that has been spoken. The two main
algorithmic components are the lexicon and the search algorithm. For now, we dis-
cuss these components informally. The lexicon contains the typical pronunciations
of each word in the dictionary. An example of a lexicon for English is the set of
phonetic transcriptions of the words in an English dictionary. From the phonetic
transcriptions, one can obtain canonical acoustic models for the words in the dic-
tionary. These acoustic models can be considered to be Markov sources over the
alphabet F . The search algorithm compares the input sequence to the canonical
acoustic model for each word in the lexicon. It outputs the word that maximizes
a given objective function. In theory, the objective function is the likelihood of
a word, given the observation sequence. In practice, however, the computation of
the objective function is usually approximated using heuristics, the effectiveness of
which are established experimentally; i.e., no theoretical quantification is available
on the disparity between the heuristic solution and the optimal solution. Such an
approximation is justified by the need for fast responses in the presence of large dic-
tionaries and lexicons. As we will see, several aspects related to the representation
of the lexicon influence the search heuristics.

In CSR, the recognizer takes as input the observation sequence corresponding
to a spoken sentence and outputs, with high probability, that sentence. The three
algorithmic components are the lexicon, the language model or grammar, and the
search algorithm. Again, for now, we discuss these components informally. The
lexicon is exactly as in IWR, whereas the language model gives a stochastic de-
scription of the language. That is, the language model gives a syntactic description
of the language, and, in addition, it also provides a (possibly probabilistic) descrip-
tion of which specific words can follow another word or group of words; e.g., which
specific nouns can follow a specific verb. The lexicon is obtained as in the case of
IWR, whereas the language model is built using linguistic as well as task-specific
knowledge. The search algorithm uses the language model and, for each word, the
acoustic models derived from the lexicon, to “match” the input sequence, trying
to find a grammatically correct sentence that maximizes a given objective func-
tion. As an objective function, here again one would like to use the likelihood of a
sentence given the observation sequence. Even for small languages, however, this
is not possible or computationally feasible. (The reasons will be sketched in the

Algorithmic Aspects in Speech Recognition: An Introduction · 5

technical discussion.) Therefore, the search algorithms use some reasonable ap-
proximations to the likelihood function, and, even within such approximate search
schemes, heuristics are used to speed the process.

At first, IWR seems to be a special case of CSR. Therefore, from the algorithmic
design point of view, one could think of devising effective search techniques for
the special case, hoping to extend them to the more general case. Unfortunately,
this approach does not seem viable, because the nature of the search procedures
for IWR differs from the nature of the corresponding procedures for CSR. We now
briefly address the disparities in high-level terms, along with an example.

In IWR, all the needed acoustic information modeling the words in the dictionary
is available to the search procedure. That is, for each word in the dictionary there
is a canonical acoustic model of that word in the lexicon. Thus, the search problem
becomes one of pattern recognition, in the sense that the search procedure tries to
find the canonical model that best matches the input observations.

In CSR, the acoustic information modeling the sentences in the language is given
only partially and implicitly in terms of rules. That is, there is no canonical acoustic
model for each sentence in the language. The only canonical acoustic models that
are available are those in the lexicon that correspond to the words in the language.
The search procedure must therefore assemble a sequence of canonical acoustic mod-
els that best match the observation sequence, guided by the rules of the language.
Such an assembly is complicated by the phenomenon of inter-word dependencies:
when we utter a sentence, the sounds associated with one word influence the sounds
associated with the next word, via coarticulation effects of each phone on successive
phones. (For example, consider the utterances, “How to recognize speech,” and,
“How to wreck a nice beach.”) Since these inter-word dependencies are not com-
pletely modeled and described by the lexicon and the language model (otherwise,
we would have a canonical acoustic model for each sentence in the language), the
search procedure for CSR faces the additional difficult task of determining, using
incomplete information, where a word begins and ends. In fact, for a given ob-
servation sequence, the search procedure usually postulates many different word
boundaries, which may in turn lead to exponentially many ways of decoding the
input sequence into a sequence of words.

Figures 2 and 3 demonstrate the differences between the IWR and CSR tasks.
Each figure displays, top-to-bottom, an acoustic waveform, a spectrogram, and
labelings for the sentence, “Show me a flight to Boston.” In Figure 2, the words
are spoken in isolation; in Figure 3, the sentence is spoken fluently. The acoustic
waveform displays signal amplitude as a function of time. The spectrogram displays
energy as a function of time and frequency: darker bands represent more energy
at a given frequency and time.1 The acoustic waveform and spectrogram were
hand-segmented into phones. The top set of labels shows the ending time of each
phone, and the bottom set of labels shows the ending time of each word. (The
phones are transcribed in ARPABET [Shoup 1980].) Notice that the isolated-word
case contains distinct, easy-to-detect boundaries, without coarticulation effects on
boundary phones. In the continuous-speech case, however, the word boundaries

1A black-and-white spectrogram is not, in fact, very useful, except to show where various acoustic
features begin and end, which is our purpose.

6 · A. L. Buchsbaum and R. Giancarlo

Fig. 2. Acoustic waveform, spectrogram, and labelings for the sentence, “Show me a flight to

Boston,” with each word spoken in isolation.

Algorithmic Aspects in Speech Recognition: An Introduction · 7

Fig. 3. Acoustic waveform, spectrogram, and labelings for the sentence, “Show me a flight to
Boston,” spoken fluently.

8 · A. L. Buchsbaum and R. Giancarlo

are not clear, and phones at word-boundaries display coarticulation effects. In
an extreme case, the /t/ of “flight” and the /t/ of “to” have elided. Thus, in
CSR, not only does one face the problem of finding word boundaries, but also, due
to coarticulation effects, the acoustic models for each word in the lexicon do not
necessarily reflect the actual utterance of the word in the sentence.

3. FUNDAMENTAL EQUATIONS FOR SPEECH RECOGNITION

In this section, we discuss two major paradigms for speech recognition: the stochas-
tic approach—in particular, maximum likelihood—and the template-based approach.
While the remainder of this paper concentrates on the former, due to its dominance
in current technology, we briefly discuss the latter to demonstrate alternatives.

3.1 The Stochastic Approach

Let L denote the language composed of the set of sentences that the system has
to recognize, and let D denote the associated dictionary. The task of the speech
recognizer is the following. Given an observation sequence X corresponding to some
unknown sentence W , output the sentence Ŵ that, according to some criterion, best
accounts for the observation sequence. When the dictionary and/or the language
are large, the criterion that has become dominant in making this choice is maximum
likelihood [Bahl et al. 1983; Jelinek et al. 1992], as follows.

Assume that for each sentence W = w1 · · ·wg ∈ L, we know the probability
Pr(W) of uttering W . We ignore for now how to compute this quantity. Let
Pr(W |X) be the probability that the sentence W was spoken, given that the ob-
servation sequence X has been observed. Then, the recognizer should pick the
sentence Ŵ such that

Pr(Ŵ) = max
W

{Pr(W |X)} . (1)

Using Bayes’ formula, the right hand side of Equation 1 can be rewritten using

Pr(W |X) =
Pr(X|W) Pr(W)

Pr(X)
. (2)

Since the maximization in Equation 1 is over a fixed X, we have from Equations
1–2 a reduction of the problem to determining a sentence Ŵ such that2

Ŵ = argmax
W

{Pr(W) Pr(X|W)} . (3)

Given a generic probability distribution Pr, let Cs = − log Pr. For instance,
Cs (W) = − log Pr(W), and Cs (X|W) = − log Pr(X|W). The first term is the cost
of generating W and the second is the cost of “matching” the observation sequence
X with the sentence W . The term “cost” does not refer to computational complex-
ity but rather to an alternative to probabilities as a measure of the likelihood of an
event. Probabilities are referred to as scores in the speech recognition literature.

2argmaxx {f(x)} = x̂ such that f(x̂) = maxx {f(x)} . Similarly define argminx.

Algorithmic Aspects in Speech Recognition: An Introduction · 9

We use costs in order to describe later search algorithms in terms of shortest paths.
With this convention, Equation 3 can be rewritten as

Ŵ = argmin
W

{Cs (W) + Cs (X|W)} . (4)

Since we have decided to base the design of speech recognition systems on the
computation of Equations 3–4, we need to develop tools to determine, for a given
language, Pr(W) and Pr(X|W). Such tools belong to the realm of language mod-
eling and acoustic modeling, respectively, and we present them in the next section.

3.2 Template-Based Approaches

As we have said, the maximum-likelihood criterion has become dominant for the
design of speech recognition systems in which the dictionary and/or language model
are large. For small dictionaries and mainly for IWR, the template-based approach
has been successful. While it is beyond the scope of this paper to provide details
on this approach, we briefly outline it here to demonstrate that alternatives to
the maximum likelihood paradigm exist. Rabiner and Juang [1993, Ch. 4] give a
thorough tutorial on template-based methods, and Waibel and Lee [1990, Ch. 4]
give examples of practical applications of this approach.

As discussed in Section 2, consider the output from the signal processing module
of a speech recognizer to be a sequence of feature vectors. In the template-based
approach to speech recognition, one first builds a collection of reference templates,
each itself a sequence of feature vectors that represents a unit (usually a whole word)
of speech to be recognized. Then, the feature vector corresponding to the current
utterance is compared with each reference vector in turn, via some distance measure.
Various distance measures (e.g., log spectral distance, cepstral distance, weighted
cepstral distance, and likelihood distortions) have been the subject of research and
application. Additionally, methods for resolving the difference between the number
of feature vectors in the input and those of the individual reference templates have
been studied.

The template-based approach has produced favorable results for small-dictionary
applications, again mainly for IWR. In particular, the modeling of large utterances
(words instead of phones) avoids the errors induced by segmenting inputs into
smaller acoustic units. On the other hand, as the units to be modeled grow in
size, the number of such units explodes. Comparing an input against all reference
templates then becomes too time-consuming; even collecting enough reference tem-
plates to build a complete system becomes impractical once the vocabulary exceeds
a few hundred units.

Therefore, the template-based approach does not seem extensible to IWR and
CSR when the dictionary and language model are large. In these cases, the stochas-
tic approach based on maximum likelihood is applied. A very challenging long-term
research goal is to establish whether stochastic approaches other than the one sum-
marized by Equation 3 can underly effective speech recognition systems.

4. MODELING TOOLS FOR SPEECH RECOGNITION

In this section we introduce the main tools that are used for acoustic and language
modeling in speech recognition systems. They are based on hidden Markov models

10 · A. L. Buchsbaum and R. Giancarlo

(HMMs) and Markov sources (MS s). Intuitively, these are devices for modeling
doubly stochastic processes. States tend to represent some physical phenomenon
(e.g., moment in time, position in space); actions or outputs occur at states and
model the outcome of being in a particular state. As we discuss the formal defini-
tions of HMMs and MS s, it will be useful to have an example in mind.

Example. Consider a magician who has three hats (red, blue, and yellow) and
“randomly” chooses an object (a hare, a guinea pig, or a parrot)
out of one hat during a show. From show to show, he chooses first
among the hats (to vary the performance for repeat observers),
reaches into the hat to pull out an animal, and then replaces the
animal. We can use a HMM to model the hat trick, as we shall see
below.

4.1 Hidden Markov Models

Here we formally define hidden Markov models and the problems related to them
whose solutions are essential for speech recognition. Rabiner [1990] provides a
thorough tutorial.

Let Σ be an alphabet of M symbols. A hidden Markov model is a quintuple
λ = (N,M,A,B, π), where

—N is the number of states, denoted by the integers 1, . . . , N . In the magic ex-
ample, N = 3, and the states correspond to which hat (red, blue, or yellow) the
magician is about to use.

—M is the number of symbols that each state can output or recognize. M = 3 in
the magic example, as each symbol corresponds to an animal (hare, guinea pig,
or parrot) that can be pulled out of a hat.

—A is an N ×N state transition matrix such that aij is the probability of moving
from state i to state j, 1 ≤ i, j ≤ N . We must have that the sum

∑

j aij =
1,∀i. For our example, the transition matrix represents the probability of using
a particular hat in the next performance, given the hat that was used in the
current one; e.g., a11 (rsp., a12, a13) is the probability of using hat 1 (rsp., 2, 3)
next time, given that hat 1 was used currently.

—B is an observation probability distribution such that bj(σ) is the probability
of recognizing or generating the symbol σ when in state j. It must be that
∑

σ∈Σ bj(σ) = 1,∀j. In our example, bj represents the probability of pulling a
particular animal out of hat j.

—π is the initial state probability distribution such that πi is the probability of
being in state i at time 1. It must be that

∑

i πi = 1. In our example, π reflects
the probability of using a particular hat in the first show.

The state transition matrix induces a directed graph, with nodes representing
states, and arcs between states labeled with the corresponding transition probabil-
ities. Figure 4 shows the graph for the magic example. For the purposes of this
example, we label the states R, B, and Y (for the colors of the hats), and the
outputs H, G, and P (for the animals). Table 1 gives the transition and output
probabilities. (Assume that π gives an equal probability of starting with any hat.)

Algorithmic Aspects in Speech Recognition: An Introduction · 11

R B

Y

.25

.75

.25.25.75 .25

.5 0

0

Fig. 4. Graph induced by the state transition matrix for the magic example.

Transition Probabilities

R B Y

R .5 .25 .25
B .75 0 .25

Y .75 .25 0

Output Probabilities

H G P

R .25 .5 .25
B .2 .6 .2

Y .1 .8 .1

Table 1. Transition and output probabilities for the magic example. In the left table, each row
gives the probabilities of choosing the next hat based on the given current hat. In the right table,
each row gives the probabilities of choosing a certain animal out of a given hat.

The transition probabilities suggest that the magician favors the red hat, and the
output probabilities show that he prefers the guinea pig.

The term “hidden” comes from the fact that the states of the Markov model
are not observable. In fact, the number of states, output symbols, as well as the
remaining parameters of the hidden Markov model are estimated by observing the
phenomenon that the unknown Markov chain describes. Rabiner and Juang [1993]
overview such estimation procedures. In the magic example, it is as if the hats were
not colored (i.e., not distinguishable to the observer) and the magician picks one
before the show. In this situation, over time the observer of many shows sees only
a sequence of animals produced by the magician; he has no idea which hat is used
during which show, and in fact he has no idea how many hats exist at all.

It is also possible to model continuous rather than discrete observations, with-
out somehow quantizing the input. In this case, B is a collection of continuous
probability density functions such that for any j,

∫

bj(σ) dσ = 1. The bj ’s must
be restricted to allow consistent reestimation, and typically they are expressed as
finite mixtures of, e.g., Gaussian distributions. For the purpose of illustrating the
search problems in later sections, we will concentrate on discrete observations.

4.1.1 Hidden Markov Models as Generators. The HMM just defined can be used
as generator of sequences of Σ∗. Let X = x1 · · ·xT ∈ Σ∗. It can be generated by a
sequence of states Q = q1 · · · qT as follows.

(1) Set i ← 1, and choose the initial state qi according to the initial state probability
distribution π.

12 · A. L. Buchsbaum and R. Giancarlo

(2) If in state qi (having generated x1 · · ·xi−1), output xi according to the proba-
bility function bqi

.

(3) If i < T , then set i ← i + 1, enter state qi according to probabilities A[qi−1, 1 :
N], and then repeat at step (2); otherwise, stop.

In the magic example, the magician starts with hat R, B, or Y with probability
1/3 each. If he has chosen the red hat, then he picks the hare with probability
.25, the guinea pig with probability .5, and the parrot with probability .25; then he
next uses the red hat with probability .5 and the blue and yellow hats each with
probability .25. If instead he starts with the blue hat, then he picks the hare (rsp.,
guinea pig, parrot) with probability .2 (rsp., .6, .2) and next uses the red (rsp.,
blue, yellow) hat with probability .75 (rsp., 0, .25). And if he starts with the yellow
hat, then he picks the hare (rsp., guinea pig, parrot) with probability .1 (rsp., .8,
.1) and next uses the red (rsp., blue, yellow) hat with probability .75 (rsp., .25,
0). He continues picking animals and choosing hats in this way, and over time, the
observer sees a succession of animals being picked out of hats. Correspondingly,
the Markov model generates a sequence of animals.

4.1.2 Hidden Markov Models as Matchers. A HMM can also be used as a prob-
abilistic matcher of sequences of Σ∗, in the sense that it gives a measure, in terms
of probability mass, of how well the HMM λ matches or observes X:

Pr(X|λ) =

T
∏

t=1

N
∑

i=1

Pr(qt = i)bi(xt) (5)

where

Pr(qt = j) =

{

πj t = 1
∑N

i=1 Pr(qt−1 = i)aij t > 1
.

HMM λ induces an unbounded, multipartite directed graph as follows. There
are N rows, corresponding to the N states of λ, and for all t ≥ 1, columns t and
t + 1 form a complete, directed bipartite graph, with arcs directed from vertices
in column t to vertices in column t + 1. (This graph is commonly referred to as
a trellis; see, e.g., Soong and Huang [1991].) In this way the match consists of
superimposing X along all paths, starting at vertices in column 1, of length T in
the trellis. For a given vertex i in column t on a given path, the measure of how
well it matches symbol xt is composed of two parts: the probability of being in that
state (Pr(qt = i)) and the probability that the state outputs xt (bi(xt)).

In the magic example, we can calculate how likely it is that the magician first
picks the parrot, then the guinea pig, then the hare. The probability of picking
the parrot first is about .183 (1/3 chance of using the red hat times .25 chance
of picking the parrot from the red hat, and so on). From π and the transition
probability matrix, the probability of using the red (rsp., blue, yellow) hat second
is about .667 (rsp., .167, .167); thus the probability of picking the guinea pig second
is .667× .5+ .167× .6+ .167× .8 ≈ .567. The probability of using the red (rsp., blue,
yellow) hat third (and last) is about .581 (rsp., .209, .209); thus the probability of
picking the hare last is .581 × .25 + .209 × .2 + .209 × .1 ≈ .208. Therefore, the
probability that the magician picks first the parrot, then the guinea pig, and then
the hare is approximately .022.

Algorithmic Aspects in Speech Recognition: An Introduction · 13

4.1.3 Problems for Hidden Markov Models. Problems 4.1 and 4.2 are two inter-
esting problems for HMMs that are strictly related to the search phase of speech
recognition.

Problem 4.1. Given an observation sequence X = x1 · · ·xT , compute the prob-
ability Pr(X|λ) of the model λ generating (or matching) the sequence X.

This problem can be solved in O(NT×δmax) time, where δmax is the maximum in-
degree of any state in the HMM, using the forward procedure [Baum and Eagon 1967;
Baum and Sell 1968], which solves Equation 5. The forward procedure generalizes
the computation that calculated the probability of the magician pulling first a
parrot, then a guinea pig, then a hare out of hats. It is a dynamic programming
algorithm that maintains a variable αt(i), defined as

αt(i) = Pr(x1 · · ·xt, qt = i|λ);

i.e., the probability that at time t, we have observed the partial sequence x1 · · ·xt

and ended in state i. The procedure has three phases.

(1) Initialization.

α1(i) = πibi(x1), 1 ≤ i ≤ N.

(2) Induction.

αt+1(j) =

(

N
∑

i=1

αt(i)aij

)

bj(xt+1),
1 ≤ t ≤ T − 1
1 ≤ j ≤ N

.

(3) Termination.

Pr(X|λ) =

N
∑

i=1

αT (i).

Research Area 4.1. The forward procedure has the following direct applica-
tion: Given an utterance and a set of HMMs that model the words in a lexicon,
find the word that best matches the utterance. This forms a rudimentary isolated
word recognizer. The speed of the forward procedure (or any algorithm computing
the same result) bounds the size of the lexicon that can be employed. Faster algo-
rithms to compute the matching probability of a HMM therefore will find immediate
applications in isolated word recognizers. A particular direction for experimenta-
tion is to determine how the topology of the graph underlying a HMM affects the
performance of the forward procedure (or subsequent similar algorithms).

Problem 4.2. Compute the optimal state sequence Q = (q1, . . . , qT) through λ

that matches X.

The meaning of optimal is situation dependent. The most widely used criterion
is to find the single best state sequence Q that generates X, i.e., to maximize
Pr(Q|X,λ) or, equivalently, Pr(Q,X|λ). This computation is usually performed
using the Viterbi recurrence relation [Viterbi 1967], which we discuss in Section 5.
Briefly, though, the Viterbi algorithm computes

14 · A. L. Buchsbaum and R. Giancarlo

(1) the probability along the highest probability path that accounts for the first t

observations and ends in state i,

βt(i) = max
q1,...,qt−1

Pr(q1, . . . , qt−1, qt = i, x1 · · ·xt|λ),

and

(2) the state at time t− 1 that led to state i at time t along that path, denoted by
γt(i).

The computation is as follows.

(1) Initialization.

β1(i) = πibi(x1)
γ1(i) = 0

, 1 ≤ i ≤ N

(2) Induction.

βt(j) = max1≤i≤N{βt−1(i)aij}bj(xt)
γt(j) = argmax1≤i≤N{βt−1(i)aij}

,
2 ≤ t ≤ T

1 ≤ j ≤ N

(3) Termination.

P = max
1≤i≤N

{βT (i)}

qT = argmax
1≤i≤N

{βT (i)}

(4) Backtracking.

qt = γt+1(qt+1), t = T − 1, . . . , 1

The Viterbi algorithm, however, may become computationally intensive for mod-
els in which the underlying graph is large. For such models, there is a great number
of algorithms that use heuristic approaches to approximate Pr(Q,X|λ). The main
part of this paper is devoted to the presentation of some of the ideas underlying
such algorithms.

4.1.4 Application to Speech Recognition. HMMs have a natural application to
speech recognition at most stages in the pipeline of Figure 1. Each of the post
signal-processing modules in that pipeline takes output from the previous module
as well as precomputed data as input and produces output for the next module (or
the final answer). The precomputed data can easily be viewed as a HMM.

For example, consider the lexicon. This model is used to transform the phone
lattice into a word lattice by representing possible pronunciations of words (along
with stochastic measures of the likelihoods of individual pronunciations). In a HMM
corresponding to the lexicon, the states naturally represent discrete instances during
an utterance, and the outputs naturally represent phones uttered at the respective
instances. The HMM can then be used to generate (or match) words in terms of
phones.

In the rest of this section and Sections 5 and 6, we give more details on the
application of HMMs to speech recognition.

Algorithmic Aspects in Speech Recognition: An Introduction · 15

4.2 Markov Sources

We now define Markov sources (MS), following the notation of Bahl, Jelinek, and
Mercer [1983]. Let V be a set of states, E be a set of transitions between states,
and Σ̂ = Σ ∪ {φ} be an alphabet, where φ denotes the null symbol. We assume
that two elements of V , sI and sF , are distinguished as the initial and final state,
respectively. The structure of a MS is a one-to-one mapping M from E to V ×Σ̂×V .
If M(t) = (ℓ, a, r), then we refer to ℓ as the predecessor state of t, a as the output
symbol of t, and r as the successor state of t. Each transition t has a probability
distribution z associated with it such that (1) zs(t) = 0 if and only if s is not a
predecessor state of t, and (2)

∑

t zs(t) = 1, for all s ∈ V . A MS thus corresponds to
a directed, labeled graph with some arcs labeled φ. The latter are null transitions
and produce no output. With these conventions, a MS is yet another recognition
and/or generation device for strings in Σ∗.

As can be easily seen, HMMs and MS s are very similar: HMMs generate output
at the states, whereas MS s generate outputs during transitions between states.
Furthermore, a MS can represent any process that can be modeled by a HMM:
there is a corresponding state for each state of the HMM, and a transition (i, σ, j)
with zi(i, σ, j) = aijbi(σ), for all 1 ≤ i, j ≤ N and σ ∈ Σ. It is not necessarily the
case, however, that there is an equivalent HMM for a given MS. The reason is that
MS s allow for the output symbol and transition probability distributions of a given
state to be interdependent, whereas the output symbol probability distribution at
any state in a HMM is independent of the transition probability for that state. For
example, a three-state MS might allow symbols 4 and 5 to be output on transitions
from state 1 to state 2 but only symbol 4 to be output on transition from state
1 to state 3; no HMM can model the same phenomenon. We could extend the
definition of HMMs to include null symbols and then allow such interdependencies
by the introduction of intermediate states. This approach, however, affects the
time-synchronous behavior of HMMs as sequence generators/matchers, and whether
or not the two machines (the original MS and the induced HMM) are equivalent
becomes application dependent.

We introduce both HMMs and MS s, because in most speech recognition systems,
they are used to model different levels of abstraction, as we will see in the next
section. The only notable exceptions are the systems built at IBM [Bahl et al.
1983].

4.3 Acoustic Word Models via Acoustic Phone Models

In this section we describe a general framework in which one can obtain acoustic
models for words for use in a speech recognition system.

From the phonetic point of view, phonemes are the smallest units of speech
that distinguish the sound of one word from that of another. For instance, in
English, the /b/ in “big” and the /p/ in “pig” represent two different phonemes.
Whether to refer to the phonetic units here as “phonemes” or simply “phones” is
a matter of debate that is beyond the scope of this paper. We shall use the term
“phone” from now on. American English uses about 50 basic phones. (Shoup [1980]
provides a list.) The exact number of phones that one uses depends on linguistic
considerations.

16 · A. L. Buchsbaum and R. Giancarlo

/b/

/ae/

/n/ /n/ /t/

/t/

/eh/

/d/ /l/ /d/ /g/

/d/

bed bell bad bag ban bat

bend bent

Fig. 5. A trie representing common pronunciations of the words “bed,” “bell,” “bend,” “bent,”

“bad,” “bag,” “ban,” and “bat.”

Let P denote the alphabet of phones (fixed a priori). With each word w ∈ D we
associate a finite set of strings in P∗ (each describing a different pronunciation of
w). This set (often unitary) can be represented, in a straightforward way, using a
directed graph Gw, in which each arc is labeled with a phone. The set {Gw|w ∈ D}
forms the lexicon. Usually the lexicon is represented in a compact form by a trie
over P. Figure 5 gives an example.

As defined, the lexicon is a static data structure, not readily usable for speech
recognition. It gives a written representation of the pronunciations of the words
in D, but it does not contain any acoustic information about the pronunciations,
whereas the input string is over the alphabet F of feature vectors, which encode
acoustic information. Moreover, for w ∈ D, Gw has no probabilistic structure,
although, as intuition suggests, not all phones are equally likely to appear in a
given position of the phonetic representation of a word. The latter problem is
solved by using estimation procedures to transform Gw into a Markov source MSw

(necessitating estimating the transition probabilities on the arcs).
Let us consider a solution to the former problem. First, the phones are expressed

in terms of feature vectors. For each phone f ∈ P, one builds (through estimation
procedures) a HMM, denoted HMMf , over the alphabet Σ = F . Typically, each
phone HMM is a directed graph having a minimum of four and a maximum of
seven states with exactly one source, one sink, self-loops, and no back arcs, i.e.,
arcs directed from one vertex towards another closer to the source. (See Figure
6(a).) HMMf gives an acoustic model describing the different ways in which one
can pronounce the given phone. Intuitively, each path from a source to a sink
in HMMf gives an acoustic representation of a given pronunciation of the phone.
In technical terms, HMMf is a device for computing how likely it is that a given
observation sequence X ∈ F∗ acoustically matches the given phone: this measure is
given by Pr(X|HMMf) (which can be computed as described in Sections 4.1–4.2).
Notice that this model captures the intuition that not all observation sequences

Algorithmic Aspects in Speech Recognition: An Introduction · 17

(a)

d/1

ae/.6

ey/.4 t/.2

dx/.8

ax/1

(b)

/d/

/ae/

/ey/ /t/

/dx/

/ax/

.6

.4 1

1 .8

.2 1

1

(c)

Fig. 6. (a) Topology of a typical seven-state phone HMM [Bahl et al. 1993; Lee 1990]. Circles

represent states, and arcs reflect non-zero transition probabilities between connected states. Prob-
abilities as well as output symbols (from the alphabet of feature vectors) depend on the specific
phone and are not shown. (b) A Markov source for the word “data,” taken from Pereira, Riley,
and Sproat [1994]. Circles represent states, and arcs represent transitions. Arcs are labeled f/ρ,

denoting that the associated transition outputs/recognizes phone f ∈ P and occurs with prob-
ability ρ. The phones are transcribed in ARPABET [Shoup 1980]. (c) A hidden Markov model
for the word “data,” built using the Markov source in (b), with the individual phone HMMs of
(a) replacing the MS arcs. Each HMM is surrounded by a box marked with the phone it out-

puts/recognizes. Transition probabilities, taken from (b), are given on arcs that represent state
transitions between the individual phone HMMs. Other probabilities as well as the individual
(feature vector) outputs from each state are not shown.

18 · A. L. Buchsbaum and R. Giancarlo

are equally likely to match a given phone acoustically. We also remark that the
observation probability distribution associated with each state is the probability
distribution associated with F .

Once the HMM for each phone has been built, we can obtain the acoustic model
for a word w by replacing each arc labeled f ∈ P of MSw with HMMf . The result
is a HMM providing an acoustic model for w (which we denote HMMw). We will
not describe this process explicitly. We point out, however, that it requires the
introduction of additional arcs and vertices to connect properly the various phone
HMMs. (See Figure 6(b)–(c).)

Although the approach we have presented for obtaining acoustic word models
may seem quite specialized, it is quite modular. In one direction, we can specialize
it even further by eliminating phones as building blocks for words and by com-
puting directly from training data the HMMs HMMw, for w ∈ D. This approach
is preferable when the dictionary D is small. In the other direction, we can in-
troduce several different layers of abstraction between the phones and the words.
For instance, we can express phones in terms of acoustic data, syllables in terms
of phones, and words in terms of syllables. Now, the HMMs giving the acoustic
models for syllables are obtained using the HMMs for phones as building blocks,
and, in turn, the HMMs giving acoustic models for words are obtained using the
HMMs for syllables as building blocks. In general, we have the following layered
approach. Let Pi be the alphabet of units of layer i, i = 0, · · · , k, with Pk = D.
The lexicon of layer i is a set of directed graphs. Each graph corresponds to a unit
of Pi and represents this unit as a set of strings in P∗

i−1, i ≥ 1. We obtain acoustic
models as follows.

(1) Using training procedures, build HMM acoustic models for each unit in P0

using the alphabet of feature vectors F .

(2) Assume that we have the HMM acoustic models for the units in layer Pi−1,
i ≥ 1. For each graph in the lexicon at level i, compute the corresponding
MS. Inductively combine these Markov sources with the HMMs representing
the units at the previous layer (i − 1) to obtain the acoustic HMM models for
the units in Pi.

A few remarks are in order. As discussed earlier, HMMs and MSs are essentially
the same objects. The layered approach introduced here, however, uses an HMM
for its base layer and then MSs for subsequent layers. The reason is convenience.
Recall that the alphabet of feature vectors is not bounded. To use a MS to model
phones, its alphabet should be Σ = F , and therefore the out-degree of each vertex
in the MS would be unbounded, causing technical problems for the use of the MS
in practical recognizers, in that the graphs to be searched would be unbounded.
The problem of unbounded out-degree does not arise with HMMs, however: The
alphabet is associated to the states, and, even if it is unbounded, no difficulties
arise as long as the observation probability function b can be computed quickly for
each symbol in F .

Notice also that the acoustic information for layer Pi is obtained by substituting
lexical information into the Markov sources at level i with acoustic information
known for the lower level i−1 (through hidden Markov models). These substitutions
introduce a lot of redundancy into the acoustic model at all levels in this hierarchy of

Algorithmic Aspects in Speech Recognition: An Introduction · 19

layers. For instance, the same phone may appear in different places in the phonetic
transcription of a word. When building an acoustic model for the word, the different
occurrences of the same phone will each be replaced by the same acoustic model.
The end result is that the graph representing the final acoustic information will be
huge, and the search procedures exploring it will be slow.

Research Area 4.2. One of the recurring problems in speech recognition is to
determine how to alleviate this redundancy. A critical open problem, therefore, is
to devise methods to reduce the sizes of HMMs and lattices, and we discuss this in
more detail in Sections 5 and 8.

Limited to phones and words, this layered acoustic modeling, or variations of it,
is used in a few current systems. (Kenney et al. [1993] and Lacouture and Mori
[1991] are good examples.) In its simplest form, the lexicon is a trie defined over
the alphabet of phones, with no probabilistic structure attached to it [Lacouture
and Mori 1991], whereas in other approaches, the trie structure as well as the
probabilistic structure is preserved [Kenny et al. 1993]. Even in such specialized
layered acoustic modelings, there is the problem of redundancy, outlined above. The
approaches that are currently used to address this problem are heuristic in nature,
even when they employ minimization techniques from automata theory [Hopcroft
and Ullman 1979], ignoring the probability structure attached to HMMs.

Finally, the above approach does not account for coarticulatory effects on phones.
That is, the pronunciation of a phone f depends on preceding and following phones
as well as f itself. For instance, contrast the pronunciations of the phones at word
boundaries in Figure 2 with their counterparts in Figure 3. How to model these
dependencies is an active area of research. (Lee [1990] gives a good overview.)
One solution is to use context-dependent diphones and triphones [Bahl et al. 1980;
Jelinek et al. 1975; Lee 1990; Schwartz et al. 1984]. Rather than build an acoustic
model for each phone f ∈ P, we build models for the diphones αf and fβ and the
triphones αfβ, for α, β ∈ P. The diphones model f in the contexts of a preceding
α and a following β, respectively, and the triphones model f in the mutual context
of a preceding α and a following β. The diphone and triphone models are then
connected appropriately to build word HMMs. Two problems arise due to the
large number of diphones and triphones: memory and training. Storing all possible
diphone and triphone models can consume a large amount of memory, especially
considering that many models may be used rarely, if ever. Also due to this sparsity
of occurrence, training such models is difficult; usually some sort of interpolation
of available data is required.

4.4 The Language Model

Given a language L, the language model provides both a description of the language
and a means to compute Pr(W), for each W ∈ L. Pr(W) is required for the
computation of Equations 3–4. Let W = w1 · · ·wk. Pr(W) can be computed as

Pr(W) = Pr(w1 · · ·wk) = Pr(w1) Pr(w2|w1) · · ·Pr(wk|w1 · · ·wk−1).

It is infeasible to estimate the conditional word probabilities Pr(wj |w1 · · ·wj−1)
for all words and sentences in a language. A simple solution is to approximate

20 · A. L. Buchsbaum and R. Giancarlo

Pr(wj |w1 · · ·wj−1) by Pr(wj |wj−K+1 · · ·wj−1), for a fixed value of K. A K-gram
language model is a Markov source in which each state represents a (K − 1)-tuple
of words. There is a transition between state S representing w1 · · ·wK−1 and state
S′ representing w2 · · ·wK if and only if wK can follow w1 · · ·wK−1. This transition
is labeled wK , and it has probability Pr(wK |w1 · · ·wK−1). Usually K is 2 or 3,
and the transition probabilities are estimated by analyzing a large corpus of text.
(Jelinek, Mercer, and Roukos [1992] give an example.)

A few comments are in order. First, by approximating the language model by
a K-gram language model, the search algorithms that use the latter model are
inherently limited to computing approximations to Equations 3–4. Moreover, the
accuracy of these approximations can only be determined experimentally. (We do
not know Pr(W).) Another problem is that for a typical language dictionary of
20,000 words and for K = 2, the number of vertices and arcs of a 2-gram language
model would be over four hundred million. The size of the language model may
thus be a serious obstacle to the performance of the search algorithm. One way
to alleviate this problem is to group the K-tuples of words into equivalence classes
[Jelinek et al. 1992] and build a reduced K-gram language model in which each state
represents an equivalence class. This division into equivalence classes is performed
via heuristics based on linguistic as well as task-specific knowledge. Jelinek, Mercer,
and Roukos [1992] provide a detailed description of this technique.

Analogous to coarticulatory effect on phones, we can also consider modeling inter-
word dependencies—how the pronunciation of a word changes in context—in the
language model. One approach is to insert boundary phones at the beginnings and
endings of words and connect adjacent words accordingly. (Bahl et al. [1980] and
Jelinek, Bahl, and Mercer [1975] give examples.) This approach makes the language
model graph even larger, affecting future search algorithms, and also contributes
to the redundancy problem outlined in the previous section.

4.5 Use of Models

Here we briefly discuss how the modeling tools are actually used in speech recog-
nition. Recall from Section 3 that, given an observation sequence X, we have to
compute the sentence Ŵ ∈ L minimizing Equation 4. In principle, this compu-
tation can be performed as follows. We can use the “layered approach” described
in Section 4.3 to build a HMM for the language L. That would give a canonical
acoustic model for the entire language. Then, we could use either the forward or
Viterbi procedure (cf. Section 4.1) to perform the required computation (or an ap-
proximation of it). Unfortunately, the HMM for the entire language would be too
large to fit in memory, and, in any case, searching through such a large graph is
too slow.

The approach that is currently used instead is the one depicted in Figure 1, in
which the search phase is divided into pipelined stages. The output of the first
stage is a phone lattice, i.e., a directed acyclic graph (DAG) with arcs labeled by
phones. Each arc has an associated weight, corresponding to the probability that
some substring of the observation sequence actually produces the phone labeling
the arc. This graph is given as input to the second stage and is “intersected” with
the lexicon. The output is a word lattice, i.e, a DAG in which each arc is labeled
with a word and a weight. Figure 7 gives an example. The weight assigned to an

Algorithmic Aspects in Speech Recognition: An Introduction · 21

0

1what/0

2
which/1.269

3
flights/0

4
flights/0

5

depart/0

6departs/6.423

depart/0
7

from/0

8

in/0.710

9from/0

10/13.27
baltimore/0

11/13.27

baltimore/0

12/13.27baltimore/0

to/1.644

to/1.718

Fig. 7. A word lattice produced for the utterance, “What flights depart from Baltimore?” Arcs
are labeled by words and weights; each weight is the negated log of the corresponding transition
probability. Final states are in double circles and include negated log probabilities of stopping in

the corresponding state.

arc corresponds to the cost that a substring of phones (given by a path in the phone
lattice at the end of the previous stage) actually produces the word labeling the
arc. Finally, the word lattice is “intersected” with the language model to get the
most likely sentence corresponding to the observation sequence.

Each stage of the recognition process depends heavily on the size of the lattice
received as input. In order to speed up the stage, each lattice is pruned to reduce
its size while (hopefully) retaining the most promising paths. To date, pruning has
been based mostly on heuristics. (See for instance, Ljolje and Riley [1992], Riley
et al. [1995], and the literature mentioned therein.) As we will see, however, very
recent results on the use of weighted automata in speech recognition [Mohri 1997b;
Pereira et al. 1994; Pereira and Riley 1997] have provided solid theoretical ground
as well as impressive performance for the problem of size reduction of lattices.

In Sections 5–6 we will present the main computational problems that so far have
characterized the construction of pipelined recognizers. Then, in Sections 7–8 we
will outline a new approach to recognition and its associated computational prob-
lems. The novelty of the approach consists of considering the recognition process as
a transduction. Preliminary results are quite encouraging [Pereira and Riley 1997].

5. THE VITERBI ALGORITHM

One of the most important tools for speech recognition is the Viterbi algorithm
[Viterbi 1967]. Here we present a general version of it in the context of IWR, and
we state a few related open problems.

Let GD be the lexicon for D. Assume that GD is a directed graph, with one
designated source node and possibly many designated sink nodes, in which each
arc is labeled with a phone; multiple arcs connecting the same pair of nodes are
labeled with distinct phones. We say that a path in the graph is complete if it starts
at the source and ends at a sink. For each word in D, there is a complete path in
GD that induces a phonetic representation of the word. Let MSD be the Markov
source corresponding to GD; i.e., MSD has the same topological structure as does
GD and, in addition, a probability structure attached to its arcs. We can transform
MSD into a hidden Markov model HD by applying to MSD the same procedure
that transforms MSw, w ∈ D, into HMMw. (See Section 4.3.) We remark that the

22 · A. L. Buchsbaum and R. Giancarlo

output alphabet of HD is F . Notice that both MSD and HD are directed graphs
with one source. For example, in Figure 6(c), the first (leftmost) state of the HMM
for the phone /d/ is the source, and the last (rightmost) state for the phone /ax/
is the only sink. Assume that HD has N states.

The problem is the following: Given an input string X = x1 · · ·xT ∈ F∗ (cor-
responding to the acoustic observation of a word), we want to compute Equation
4, where W is restricted to be one word in the dictionary. Cs (W) is given by the
language model. (If not available, Cs (W) is simply ignored.) Thus, the computa-
tion of Equation 4 reduces to computing Cs (X|w), for each w ∈ D. Since the only
acoustic model available for w is HMMw, we can consider Cs (X|w) to be the over-
all cost Cs (X|HMMw) of the model HMMw generating X. (Since Cs (X|HMMw)
depends on Pr(X|HMMw), we are simply solving Problem 4.1 of Section 4.)

This approach, however, would be too time consuming for large dictionaries.
Moreover, it would not exploit the fact that many words in D may have common
phonetic information, e.g., a prefix in common. We can exploit these common pho-
netic structures by estimating Cs (X|HMMw) through the shortest complete path
in HD that generates X. Since this path ends at a sink, it naturally corresponds
to a word ŵ ∈ D, which approximates the solution to Equation 4. It is an approx-
imation of the cost of ŵ, because it neglects other, longer paths that also induce
the same word. The validity of the approximation is usually verified empirically.

For example, in Figure 6(c), a complete path generates an acoustic observation
for the word “data.” If we transform the arc lengths into the corresponding negative
log probabilities, then the shortest complete path gives the optimal state sequence
that generates such an acoustic observation. That path yields an approximation to
the “best” acoustic observation of the word “data,” i.e., the most common utterance
of the word.

We note that here we see the recurrence of the redundancy problem mentioned in
Research Area 4.2. In this case, we want to remove as much redundancy from the
lexicon as possible while trying to preserve the accuracy of the recognition proce-
dures. Indeed, we have compressed the lexicon {Gw|w ∈ D} and the corresponding
set {HMMw|w ∈ D} by representing the lexicon by a directed labeled graph. On
the other hand, we have ceded accuracy in the computation of Cs (X|HMMw) by
approximating it. Assuming that experiments demonstrate the validity of this ap-
proximation, the computation of Equation 4 has been reduced to the following
restatement of Problem 4.2.

Problem 4.2 Given an input string X = x1 · · ·xT ∈ F∗, compute a complete path
Q = q1 · · · qT that minimizes Cs (Q|X,HD) or, equivalently, Cs (Q,X|HD).

We will compute a path Q that minimizes the latter cost. For the remainder of
this section we will work with HD. Let in(s) be the set of states that have arcs
going into s (states s′ such that as′,s > 0), and let Vt(s) be the lowest cost of a
single path that accounts for the first t symbols of X and ends in state s.

Vt(s) = min
q1,···,qt−1

{Cs ((q1, · · · , qt−1, qt = s), (x1, · · · , xt)|HD)} .

Letting ctr(s1, s2) be the cost of the transition between states s1 and s2, co(s, x)

Algorithmic Aspects in Speech Recognition: An Introduction · 23

the cost for state s to output x, and ci(s) the cost for state s to be the initial state,3

one can express Vt(s) recursively.

V1(s0) = ci(s0) + co(s0, x1), for source state s0; (6)

Vt(s) = min
s′∈in(s)

{Vt−1(s
′) + ctr(s

′, s)} + co(s, xt), s ∈ [1..N], t > 1. (7)

It is easy to see that, using these equations, we can determine the best state path in
O(|E|T) operations, where E is the set of arcs in the graph underlying HD. (Refer
back to the discussion of Problem 4.2 in Section 4.1.3.)

Research Area 5.1. The major open problem regarding the computation of
equation Equation 7 is to derive faster algorithms that either compute Equation 7
exactly or yield a provably good approximation to it. As with Research Area 4.1,
a direction for experimental work is to investigate how to characterize and exploit
the topologies of the relevant graphs to achieve faster search algorithms; i.e., tailor
search algorithms to handle these particular special cases of graphs.

In what follows, we describe two current major lines of research directed at
Research Area 5.1.

5.1 Graph Theoretic Approach

We first introduce some notation. We denote the class of classical shortest-path
problems on weighted graphs as CSP. (Cormen, Leiserson, and Rivest [1991] sum-
marize such problems.) Recall that the length of a path is the number of arcs in
it. We refer to the shortest-path problem solved by the Viterbi algorithm as VSP
and, for each vertex v, to the shortest path to v computed by the Viterbi algorithm
at iteration t as vpath(v, t). We would like to establish a relationship between CSP
and VSP.

In CSP, the contribution that each arc can give to the paths using it is fixed once
and for all when the graph G is specified. Exploiting this cost structure and/or the
structure of graph G, one can obtain fast algorithms for problems in CSP [Cormen
et al. 1991].

At a very high level, the paradigm underlying efficient algorithms for solving
special cases of the single-source shortest path problem is the following. At each
iteration, maintain a partition of the vertices into two sets: DONE and ACTIVE.
For each vertex x in DONE, the algorithm has computed the shortest path to x

and is sure that it will not change. For the vertices in ACTIVE, only estimates of
the shortest paths are available. Examples of this scheme are Dijkstra’s algorithm
[Dijkstra 1959] (which exploits the fact that the graph has nonnegative arc weights)
and the algorithm for directed acyclic graphs (which exploits the topological struc-
ture of the graph). Unfortunately, the partition cannot be efficiently maintained
for arbitrary graphs with negative weights.

In VSP, the contribution that each arc (u, v) of HD can give to the vpaths using
it has two main parts: the cost of the arc and the cost of how well a given input

3I.e., using the definition of HMMs in Section 4.1, ctr(s1, s2) = − log as1,s2
; co(s, x) = − log bs(x);

and ci(s) = − log πs.

24 · A. L. Buchsbaum and R. Giancarlo

symbol matches the symbols that state u can output. Whereas the first cost is fixed
once and for all, the second depends on the time t that arc (u, v) is traversed, since t

determines which input symbol we are matching. Thus, the cost of traversing an arc
(u, v) when solving VSP is dynamic. In general, with this dynamic cost structure, it
does not seem possible to maintain efficiently a partition of the vertices of HD into
two classes, as a Dijkstra-type algorithm requires. Indeed, even if the costs on the
arcs and vertices of HD are nonnegative, the fact that they change depending on
when they are traversed implies that the cost of vpath(v, t) may change from time t

to t+1. That is, we can be sure that we have computed the best-cost path to v only
at time T . Informally, the way in which this dynamicity of costs in VSP affects the
computation of vpaths is similar to the way in which the introduction of negative
arc weights affects the computation of shortest paths in CSP. Indeed, there is a
striking similarity between the Viterbi and Bellman-Ford algorithms for shortest
paths [Bellman 1958; Ford and Fulkerson 1962]: the structure of the computation is
essentially the same, except that the length of the vpath is bounded by T in Viterbi
whereas the length of the shortest path is bounded by |V | in Bellman-Ford.

Another technique that has proven successful for CSP is scaling [Edmonds and
Karp 1972; Gabow 1985; Gabow and Tarjan 1989]. There is no analog to this
technique in the speech recognition literature. Intuitively, scaling transforms a
general CSP problem into an equivalent and computationally simpler problem on
a graph with nonnegative arc weights.

Research Area 5.2. Devise a technique analogous to scaling that would trans-
form VSP into an equivalent and computationally simpler problem.

As mentioned previously, an interesting avenue to explore is how the computation
of Equation 7 depends on the topological structure of HD. For instance, the vertices
are processed in an arbitrary order for any given step of the computation of Equation
7. An analysis of the structure of the HMM may suggest more effective processing
orders for the vertices.

5.2 Language Theoretic Approach

Let Q be a deterministic finite-state automaton that accepts strings from a language
L. It is well known that, starting from Q, we can compute a minimal automaton
Q∗, i.e., the one with the smallest number of states, that accepts strings from L

[Hopcroft and Ullman 1979]. One can think of Q∗ as the “most efficient” deter-
ministic automaton that supports the membership operation for the language L.
Q∗ is obtained by defining an equivalence relation R on the strings of Σ∗ and the
states of Q: xRy if and only if δ(q0, x) = δ(q0, y), where q0 and δ are the initial
state and the transition function of Q, respectively. The states of Q∗ are the equiv-
alence classes obtained by applying R to the states of Q. The states of Q∗ can be
suitably connected so that Q∗ still recognizes L, because one can show that R is
right invariant; i.e., xRy implies that xzRyz.

Continuing, HD can be seen as some kind of finite automaton that supports
the operation: Given input string x of length t, find the best vpath(v, t), v ∈
V . Analogous to the membership operation defined for languages, we would like
to build a “minimal” H ′

D that supports the operation just defined for HD. To
be useful, H ′

D should have substantially fewer states than HD, and the Viterbi

Algorithmic Aspects in Speech Recognition: An Introduction · 25

computation on H ′
D should run substantially faster than on HD. That is, we

would like to eliminate some of the redundancy in HD to avoid the repetition of
the Viterbi computation on similar parts of the graph underlying HD. This is a
restatement of Research Area 4.2. The above problem requires investigation at
both the definitional and computational levels. Indeed, variations of the stated
minimization problem may turn out to be more relevant to speech recognition.
That HD is not deterministic must also be considered. (Here again we see the
theme of elimination of redundancy versus accuracy of recognition.)

We now explore some of the difficulties that one may face in trying to define such
H ′

D. We would like to obtain an H ′
D that preserves the Viterbi computation of HD

(i.e., yields the same solution, or a good approximation, to Equations 6–7) but that
has fewer states than HD. For a string x of length t, let

vstate (x) = {s ∈ [1..N] | vpath(s, t) ≤ vpath(s′, t), s′ ∈ [1..N]} ;

i.e., vstate (x) is the set of states {s} of HD such that vpath(s, t) is minimum when
computed over input string x. Let R be the following equivalence relation, defined
over the strings of Σ∗ of length t: xRy if and only if vstate (x) = vstate (y). R

induces a partition of the states of HD into equivalence classes. One can easily
build an example showing that R is not right invariant, however. Therefore, we
cannot obtain an automaton “equivalent to” HD based on such an equivalence
relation, because we cannot “connect” the equivalence classes to obtain a HMM
H ′

D.
The natural question here is to identify right-invariant equivalence relations over

the states of HD that try to achieve the goal of eliminating the redundancy from
HD while trying to preserve the Viterbi computation on HD. That is, it would
be interesting to obtain a HMM H ′

D that is not necessarily minimal but that ap-
proximates well and fast the behavior of HD with respect to the computation of
Equation 7. Some research related to this question has already been performed.
(Kenny et al. [1993] provide an example.) We will revisit this issue in Section 8.

Another approach that has been used to speed the Viterbi computation is to
introduce a certain amount of nondeterminism into HD. That is, in some cases
[Bahl et al. 1983; Kenny et al. 1993], HD is augmented with ǫ-transitions. The
effect of these transitions is to reduce the size of HD and therefore to speed the
computation of VSP.

6. A STRUCTURED APPROACH TO IWR

Another fundamental tool for speech recognition tasks is the A∗ algorithm, a com-
putational paradigm for solving optimization problems that involve searching large,
weighted graphs. Hart, Nilsson, and Raphael [1968] originally introduce and give
an extensive treatment of this paradigm. Here we first reformulate Problem 4.1 as
an optimization problem over the lexicon GD. (We refer to the new problem as
Problem 6.1.) Then we outline how the A∗ algorithm can be used to find a feasible
solution to Problem 6.1, and we also provide a general framework for studying a
wide class of optimization problems that are related to Problem 6.1. Finally, we
outline some general principles used in IWR to design good algorithms for such
optimization problems; many of these principles extend to CSR as well.

26 · A. L. Buchsbaum and R. Giancarlo

6.1 An Optimization Problem on GD

Let f be a sequence of phones corresponding to a path in MSD, starting at the
source. We call f a transcript and say that it is complete when the corresponding
path is complete.

Recall from Section 5 that a solution to Problem 4.1 consists of finding a complete
path Q in HD that minimizes Cs (Q,X|HD). In that section, we also outline how to
obtain HD from MSD by substituting phones with the associated HMMs. Since the
complete path Q in HD minimizing Cs (Q,X|HD) starts at the source and ends at
a sink, it naturally corresponds to a complete path in MSD that induces a sequence
of phones f = f1 · · · fk. This sequence of phones is the one that “best accounts” for
the input sequence X. Therefore, Problem 4.1 can be restated as

Problem 6.1. Given a string X = x1 · · ·xT ∈ F∗, compute

argmin
f complete transcript

Cs (f ,X|MSD). (8)

6.2 The A∗ Algorithm

We outline an algorithm that will find a feasible solution to Problem 6.1, i.e., a
complete transcript f that accounts for the input string X. If additional conditions
are verified, f will be an optimal transcript, i.e., a real solution to Equation 8.
We first introduce some notation. For each transcript f and string Y ∈ F∗, let
PCs (f , Y) be as Cs (f , Y |MSD), except that f need not be a complete transcript.
PCs is the cost of “matching” Y along the path given by f . Let EECs (f , Z),
Z ∈ F∗, be the estimated cost of extending transcript f into a complete transcript
fg such that g “matches” Z. This heuristic estimate is performed over all possible
extensions of f. We assume the heuristic is known but leave it unspecified. Finally,
let ECs (f ,X) = PCs (f ,X1) + EECs (f ,X2), where X = X1X2 and f “matches”
X1, be the estimated cost of transcript f being a prefix of the optimal solution to
Equation 8. At each step, the algorithm keeps transcripts in a priority queue4

QUEUE sorted in increasing order according to the value of the ECs function. Let
DEQUEUE be the operation that removes and returns the item of highest priority
(lowest estimated cost) from the queue, and let ENQUEUE (x, p) be the operation
that inserts a new item x into the queue according to its priority p.

Algorithm A∗

1. QUEUE = φ; ENQUEUE (f ,ECs (f ,X)), where f is the empty transcript.

2. while f = DEQUEUE is not a complete transcript do

2.1 Using the lexicon, compute all legal one-phone extensions fg.
For each such fg, ENQUEUE (fg,ECs (fg,X)).

2.2 done.

3. done.

The above algorithm is guaranteed to find the complete transcript f that mini-
mizes Cs (f ,X|MSD), provided that the estimated cost ECs is admissible: that is,

4In the speech recognition literature, priority queues are often simply called stacks.

Algorithmic Aspects in Speech Recognition: An Introduction · 27

ECs (f ,X) ≤ CS(fg,X|MSD) holds, for all possible extensions g of f such that fg

is complete [Hart et al. 1968].

6.3 A General Optimization Problem

We now cast Problem 6.1 into a general framework. Let G = (V, E) be a directed,
labeled graph with one source and possibly many sinks. The labels on the arcs of
G come from a finite alphabet Γ. There is a match function M that measures how
well the label on a given arc e of G matches a string y ∈ Σ∗, where Σ is another
alphabet. Formally, M : Σ∗×E → R. In general, M is not computable in constant
time. We define a cost function C, which, for each vertex v of G and each string
y1 · · · yt ∈ Σ∗, gives the cost of matching the string with a path in G that ends in v.

C(y1 · · · yt, v) = min
k≥1

uj , 0<j<k

k−1
∑

i=0

M(yti+1 · · · yti+1
, (ui, ui+1)) (9)

subject to the conditions (1) 0 = t0 < t1 < · · · < tk−1 < tk = t; (2) (ui, ui+1) ∈
E , 0 ≤ i < k; and (3) u0 is the source, and uk = v. Moreover, we assume that,
for each v ∈ V and t′ < t, C(y1 · · · yt′ , v) ≤ C(y1 · · · yt′yt′+1, v). We derive the
following.

Problem 6.2. Given a string X = x1 · · ·xT ∈ Σ∗, compute

min
v∈sink(G)

C(X, v). (10)

The following algorithm finds a feasible solution to Problem 6.2, and, if additional
conditions are verified, the solution will be optimal; feasible and optimal are defined
as in Section 6.2, with respect to Equation 10. Let EC (v) be an estimate of the
cost of a feasible solution to Equation 10 that passes through v. This estimate will
continually be updated by the algorithm. Moreover, let EEC (Y,w), Y ∈ Σ∗ and
w ∈ V, be a predictor of how well the paths of G starting at w and ending at sinks
will match Y . This predictor is a heuristic function and is used to estimate and
update EC (w). THR is a threshold that is continually updated, as we will discuss
below. A vertex whose estimated cost rises above THR is eliminated from future
computation. Initially, THR gets an arbitrarily high value. QUEUE is a priority
queue containing vertices sorted according to the values of their estimated costs.

Algorithm SEARCH

1. EC (v) = THR − 1, for each v ∈ V. ENQUEUE (v0,EC (v0)) for source v0.

2. While v := DEQUEUE is not a sink do

2.1. For each vertex w such that e = (v, w) ∈ E and EC (v) < THR, compute
Ĥ = min1≤t<t′≤T C(x1 · · ·xt, v) + M(xt+1 · · ·xt′ , e) + EEC (xt′+1 · · ·xT , w).

2.2. If Ĥ < min {THR,EC (w)}, set EC (w) = Ĥ, and ENQUEUE (w, Ĥ).
Update the threshold THR.

2.3. done.

3. done.

The threshold THR constrains the search by eliminating paths that have high
costs. It is a dynamic value that is set according to the cost of the “best comparable

28 · A. L. Buchsbaum and R. Giancarlo

path.” The notion of thresholds and “best comparable paths” derives from beam
searching as applied to the Viterbi algorithm [Bahl et al. 1983; Lowerre and Reddy
1980]. In Viterbi beam searching, a common definition of best comparable path
involves considering all paths with the same number of arcs as a class and defining
THR for each path in a particular class relative to the cost of the best path in that
class. The relative difference between THR and the cost of the best comparable
path is called the beam width. How to set the beam width is another active area
of research. A basic problem is that the correct path can easily be locally bad at
certain points in the computation; if the beam width is too narrow, the correct path
will thus be eliminated from further exploration and never found as the solution.

The condition that guarantees the optimality of SEARCH is the admissibility
of EC—EC (w) must be a lower bound to the cost of any of the paths containing w

that are feasible solutions to Equation 10—and THR—the correct path must not
fall outside the beam at any point in the computation. What is important to notice
is that the above optimization problem requires a dynamic evaluation of the cost
of traversing an arc of G during the search. In general, one cannot assume that this
evaluation can be performed in constant time. Moreover, Step 2.1 of SEARCH

requires the computation of C and EEC . Again, one cannot assume that these
computations can be done in constant time, as we will see in the next section.

Research Area 6.1. Most if not all of the heuristics in the literature for speed-
ing computation of the A∗ and SEARCH algorithms either fail to guarantee actual
speedups or fail to guarantee accuracy of approximations. That is not to say that
the algorithms perform poorly, simply that the results are only derived empirically.
A natural open problem, therefore, is to (1) devise admissible heuristics that will
significantly speed computation of the A∗ and SEARCH algorithms and (2) pro-
vide theoretical analysis proving both admissibility and computational speedup. A
related problem is to determine how to measure theoretically the error rates of fast
but inadmissible heuristics.

6.4 Putting the Concepts Together

Let us apply SEARCH to solve Problem 6.1. In the IWR case, G = GD, Γ = P,
and Σ = F . For an arc e labeled with phone f ∈ P and a string y1 · · · yt ∈ F∗,
M(y1 · · · yt, e) is the cost of the best path in HMMf matching y1 · · · yt plus the
cost of the transition corresponding to e in MSD. For a vertex v and a string
y1 · · · yt ∈ F∗, C(y1 · · · yt, v) is defined as in Equation 9.

The predictor function EEC depends on the heuristic that is implemented. Usu-
ally, the heuristic is chosen so that it can be computed efficiently and in such a way
that the search converges rapidly to the solution.

With the above choices of C and M, the computation of Step 2.1 of Algo-
rithm SEARCH is time consuming. Indeed, M(xt+1 · · ·xt′ , e) is computed via
the Viterbi algorithm, and C(x1 · · ·xt, v) must be computed over all paths that
start at the source of GD and end in v. A few general ideas are used to speed the
computation of this inner loop of SEARCH.

6.4.1 Heuristic Match Functions. Define a new match function M′ that can be
computed quickly. This function approximates M. Define a new cost function Ĉ,
analogous to C, but that uses M′ and is possibly restricted to some privileged

Algorithmic Aspects in Speech Recognition: An Introduction · 29

paths. SEARCH is then used in two possible ways.

(1) With the new functions M′ and Ĉ, run SEARCH to get a set of promising
words D′. Use M and C to run SEARCH on graph GD′ to get the best word
from D′ matching X.

(2) Restrict the set D′ above to be only one word, which is output as a feasible
solution.

Usually, the function M′ is obtained by simplifying the hidden Markov mod-
els for all the phones. That is, for each phone f , HMMf is transformed into an
“equivalent” HMM′

f that is usually much smaller than HMMf . Then, M′ is still
computed via the Viterbi algorithm but using the new HMMs. The reduction from
HMMf to HMM′

f usually eliminates the admissibility of SEARCH in the sense
that the set D′ may not contain the word w corresponding to a complete transcript
f that solves Problem 6.1. We remark that, once again, we find that the study of
minimization techniques for hidden Markov models (Research Area 4.2) is central
to the development of fast algorithms for speech recognition. The ideas outlined
above have been extracted from several papers by Bahl et al. [1988, 1989, 1993].

6.4.2 Model Compression. In a preprocessing step, compute a graph G∗
D corre-

sponding to a compressed version of GD. Perform SEARCH on G∗
D, restricting

also C and EEC to G∗
D. Usually, the HMMs for the phones do not change; i.e., M

is still computed via the Viterbi algorithm on HMMf , f ∈ P.
Usually, G∗

D is obtained via standard automata minimization techniques. The
equivalence relation R used for the minimization may, however, be weaker than that
used to minimize GD in the automata theoretic sense. The probability structure
imposed on GD by the Markov source MSD is ignored in computing G∗

D. That is,
each arc of G∗

D is considered equally likely to be traversed. The omission of this
probability structure is, once again, due to the fact that no minimization techniques
exist for hidden Markov models. This omission may compromise the admissibility
of SEARCH, however. Some of the above ideas have been used by Kenny et al.
[1993] and Lacouture and Mori [1991].

6.4.3 Boundary Detection. The ideas presented so far are oriented towards a
speed-up of SEARCH by changing the global structure of GD and/or the HMMs
for the phones. Another idea, which is more local to the procedure, is to develop
tools to produce good estimates of the values of t and t′ that yield the minimum
Ĥ of Step 2.1. Then compute Ĥ only for such values of t and t′.

The development of such tools reduces to understanding which times t, 1 ≤ t ≤ T ,
are most likely to correspond to phone boundaries in X = x1 · · ·xT . In general,
the problem of identifying word and phone boundaries in an input string X is very
difficult and requires knowledge of acoustics and signal processing; see Section 9.

7. SPEECH RECOGNITION AS A TRANSDUCTION

In this section we present a new approach to speech recognition, developed by
Pereira et al. [1994, 1997], in which recognition is seen as a composition of several
transductions. We recall two definitions from the theory of rational transductions
and languages. (Berstel [1979], Berstel and Reutenauer [1988], Eilenberg [1974],
and Elgot and Mezei [1965] extensively discuss this theory and its correspondence

30 · A. L. Buchsbaum and R. Giancarlo

to automata.) Given two alphabets Σ and Γ and a semiring (K,⊕,⊗, 0, 1), a
transduction is a function T : Σ∗ × Γ∗ → K. Intuitively, a transduction assigns
a weight to each pair of strings in Σ∗ × Γ∗. A weighted language is a function
L : Σ∗ → K. Intuitively, a weighted language assigns a weight to each string in Σ∗.

Assume that we take one alphabet as F (the alphabet of observation “symbols”)
and the other as the dictionary of words D (from which the language L is generated).
Consider now Equation 4 and for the time being, let us ignore the term Cs (W),
W ∈ D∗. Recall that X ∈ F∗. If we interpret Cs (X|W) as the weight of the
pair (X,W), then the cost function defined for each pair of strings in F∗ × D∗ is
a transduction. Since X is fixed when we solve Equation 4, this latter problem
reduces to the process of computing Ŵ ∈ D∗ such that the transduction (X, Ŵ) is
the best possible.

The use of transductions allows a novel application of the pipelined approach to
speech recognition. (Again, see Figure 1.) Indeed, in Sections 7.1 we show that the
solution to Equation 4 can be seen as the “composition” of several transductions.
The “composition” operation that we use is associative. Associativity allows the
stages of the recognition process depicted in Figure 1 subsequent to signal processing
to be run in any order. In turn, this processing-order freedom allows a substantial
reduction in the size of the search space.

7.1 Fundamental Equations for Speech via Composition of Transductions

Consider a generic commutative semiring (K,⊕,⊗, 0, 1). Given two transductions
S : Σ∗ × Γ∗ → K and T : Γ∗ × ∆∗ → K, their composition S ◦ T is defined:

S ◦ T (x,w) =
⊕

y∈Γ∗

S(x, y) ⊗ T (y, w). (11)

We say that transduction S is applied to weighted language L to yield a weighted
language S[L] over Γ, where S[L](y) =

⊕

x∈Σ∗ L(x) ⊗ S(x, y).
We need to introduce some terminology that relates weighted languages and

transductions. That will allow us to consider composition and application as the
same operation. Transduction S has two weighted languages associated with it: its
first and second projections, φ1 and φ2. φ2(S) : Γ∗ → K is such that φ2(S)(y) =
⊕

x∈Σ∗ S(x, y). φ1 is defined similarly. On the other hand, a weighted language
L is the identity transduction restricted to L. That is, L(x1, x2) = L(x1) if and
only if x1 = x2; otherwise, L(x1, x2) = 0. Now, it can be easily shown [Pereira and
Riley 1997] that the application operation is φ2(L ◦ S). From now on, ◦ will also
denote application (implemented via projection and composition). We refer to this
operation as generalized composition.

We now show how to use those tools to express Equation 4 as a generalized com-
position of transductions. Our starting point is the term Cs (X|W) from Equation
4. Recall that in the layers of abstraction we introduced in Section 4.3, X ∈ F∗

can be transformed into a string over the alphabet P0. This latter string can be
transformed into a string over the alphabet P1, and so on until we get strings over
the alphabet Pk = D of words. Without loss of generality, we assume that we have
only two layers of abstraction. Now, P0 is the alphabet of phones, and P1 is the
alphabet of words. Using strings over the alphabet of phones, Cs (X|W) can be

Algorithmic Aspects in Speech Recognition: An Introduction · 31

rewritten as

Cs (X|W) = min
Y ∈P∗

0

Cs (X|Y) + Cs (Y |W). (12)

A few remarks are in order. If we interpret Cs (·|·) as a weight, then Cs (X|Y) is
a transduction for each pair of strings (X,Y) ∈ F∗ × P∗

0 . Observe that the lattice
of feature vectors output by the signal processing module in Figure 1 is a weighted
language, which we denote by LF , that assigns weight 1 to the observation sequence
X and zero to any other string in F∗. The precomputed acoustic models that are
input to the phonetic recognition module in Figure 1 also comprise a transducer,
which we denote by LA. Then the above transduction Cs (X|Y) is the composition
LF ◦ LA, which is computed by the phonetic recognition module in Figure 1.

Similarly Cs (Y |W) is a transduction for each pair of strings (Y,W) ∈ P∗
0 × P∗

1 .
This transduction is computed by the word recognition box in Figure 1. We have
already observed that Cs (X|W) is a transduction. Recalling Equation 11 and
assuming that we are working with the min-sum semiring (ℜ+,min,+,∞, 0), we
have from Equation 12 that the transduction (X,W) is the composition LF ◦LA ◦
LD, where LD is the transducer induced by the lexicon. Now, denote by LM the
precomputed grammar that is input to the task recognition box in Figure 1; i.e.,
LM is the language model (a weighted language). We thus reduce solving Equation
4 to computing the sentence Ŵ of minimum weight in the language

φ2(LF ◦ LA ◦ LD ◦ LM). (13)

Since ◦ is associative, we can compute Equation 13 in several ways. One that
corresponds to the pipelined stages outlined in Section 4.5 is φ2(((LF ◦LA) ◦LD) ◦
LM). Notice that LF ◦LA gives, for each phone sequence, the best cost of generating
X. Similarly, (LF ◦ LA) ◦ LD gives, for each word w, the best cost of generating
X. For each sentence in the language, the best cost of generating X is given by
((LF ◦ LA) ◦ LD) ◦ M .

There may be more profitable ways of computing Equation 13, however, and,
as pointed out by Pereira and Riley [1997], the fastest approach is application
specific. (The size of intermediate results can depend heavily on the recognition
task at hand.)

By using probabilities instead of costs and the sum-times semiring (ℜ+,+, ·, 0, 1),
we could obtain Equation 13 from Equation 3. The elementary operations on which
generalized composition is based when working with the sum-times semiring are
different than those used when working with the min-sum semiring, however. This
difference is important in practice, since the techniques that effectively reduce the
sizes of lattices guarantee reductions only when working with the min-sum semiring.
(See the discussion at the end of Section 8.1.) Therefore, although Equation 3 and
Equation 4 are dual, it seems more profitable to solve the latter.

7.2 Implementation Issues

The reduction of the solution of Equation 4 to the evaluation of Equation 13 raises
several issues. First, we need to implement the generalized composition operation
between two transductions. As we will briefly outline, this problem is solved by

32 · A. L. Buchsbaum and R. Giancarlo

using the correspondence between transductions and weighted automata. Second,
we need a software package for experimentation to establish which evaluation order
for Equation 13 works best. (This point depends heavily on the task for which we
have built the recognizer.) We briefly discuss those issues here.

As is well known, some classes of transductions and weighted languages can be
characterized by weighted automata. (See for instance Kuich and Salomaa [1986].)
We define weighted automata in Section 8 when we discuss some computational
problems relevant to their use in speech recognition. For the time being, we can
think of a weighted automaton as a directed graph with one source and one sink.
Each arc of the graph is labeled with a symbol and has a weight. For instance, the
word lattice in Figure 7 is a weighted automaton. (The multiple final nodes can be
appropriately unified into a single sink.) In general, any lattice can be seen as a
weighted automaton. Informally, a string z is accepted by the automaton if there
is a path from the source to the sink such that z is obtained by the catenation of
the labels on the arcs of the path. The weight (cost) of z is the minimum among
the sums of the labels on each path accepting z. (Again, we assume that we are
working with the min-sum semiring.)

Pereira et al. [1994, 1997] have shown that, given two transductions and the corre-
sponding weighted automata, their generalized composition can be implemented via
the “intersection” of the corresponding two automata. This intersection, referred
to as generalized intersection, is a nontrivial extension of the intersection operation
defined on nondeterministic finite automata. (Hopcroft and Ullman [1979] describe
this latter operation.) The generalization works roughly as follows. Assume that
we have two automata that correspond to two transductions, S and T , to be com-
posed. If we use the ordinary intersection operation for those two automata, we
would obtain an intersection automaton that assigns the wrong weights to the pair
of strings in the transduction S ◦ T . In order to obtain the correct weights, one
needs to filter out some paths from the intersection automaton. Pereira and Riley
[1997] give details.

Now, let us return to the pipelined stages of Section 4.5. We have seen that the
output of each stage is given by the “intersection” of a lattice (for instance, the
word lattice) with some canonical model (for instance, the language model). Using
the approach of Pereira et al. [1994, 1997] those “intersections” are generalized
intersections of weighted automata, where one automaton is the lattice and the
other is the model. But, by the remarks following Equation 13, we can compute
those intersections in any order, rather than in the order given in Section 4.5.

In order to experiment with various alternatives, the operations on weighted au-
tomata defined by Pereira et al. [1994, 1997] have been implemented by means of
a library of functions, each working on an abstract weighted automaton data type.
Moreover, there is also a set of composable shell commands for fast prototyping
and experimentation. In conclusion, there is a software package that, for any given
(reasonable) recognition task, will generate the code corresponding to the various
evaluations of Equation 13. In turn, that code can be used to determine experimen-
tally which evaluation order works best for the recognition task at hand. (Appendix
B describes how to obtain this software.)

Algorithmic Aspects in Speech Recognition: An Introduction · 33

8. SIZE REDUCTION OF LATTICES

Notice that both the pipelined recognizers described in Section 4.5 and the modu-
lar ones described in Section 7 can exploit size reductions in lattices and weighted
automata before performing “intersection” operations. The following problem is
therefore important to both types of recognizers: Given a weighted automaton,
compute the smallest equivalent weighted automaton. Unfortunately, the weighted
automata we wish to minimize for speech recognition are nondeterministic. There-
fore, we first need to determinize them (when possible) and then minimize them
(again, when possible). We first define weighted automata and then discuss those
two issues.

A weighted finite automaton is a quadruple A = (Q, q0,Λ, δ) such that Q is
the set of states, q0 is the initial state, Λ is the set of labels (strings over some
finite alphabet Σ) and δ is the set of transitions. A transition t ∈ δ is a quadruple
(q1, y,m, q2) with the following interpretation: Given that the automaton is in state
q1 and it is given in input y, it can move to state q2 assigning to y the weight m. We
assume that the weights are taken from a semiring (K,⊕,⊗, 0, 1). In general, the
automaton is nondeterministic. There may be another transition t′ = (q1, y,m′, q′2)
and, given the input y, the automaton can move to both q2 and q′2 (when in state
q1). It is convenient to specify a single final state qf . Obviously, the automaton
can be represented as a directed graph, and a path from initial state to final state
naturally corresponds to a sequence of transitions. Analogous to the definition in
Section 5, a path p that starts at the start state and ends at the final state is a
complete path. A path p of k arcs induces a string z ∈ Σ∗ if and only if there is a
partition of z = z1 · · · zk such that the i-th arc (from left) in p has label zi. The
weight W(p) of a path p is given by combining the weights of its arcs according
to the ⊗ operation. A string z ∈ Σ∗ is accepted by A if there exists at least one
complete path p that induces z. The weight of z is given by

⊕

W(p), where
⊕

is
taken over all complete paths p that induce z.

8.1 Determinization

Determinization is the following problem. Given a weighted automaton A, compute
an automaton A′ accepting the same set of strings with the same weights as A,
such that, given any state q′ of A′, there is only one transition out of q′ that can
be taken with a given input symbol. We refer to this deterministic automaton as
a sequential weighted automaton. Determinization of weighted automata turns out
to be challenging from the theoretical point of view and relevant for its applications
to speech. From the theoretical point of view, not all weighted automata can be de-
terminized. It is therefore natural to seek conditions under which a given weighted
automaton can be determinized. Elaborating on results obtained by Choffrut [1978]
and Weber and Klemm [1995] in the realm of string-to-string transduction, Mohri
[1997a, 1997b] identifies those conditions and provides an algorithm that checks
whether they hold; the algorithm is constructive in the case that the input au-
tomaton can be determinized. For an arbitrary automaton A, the algorithm takes
time exponential in the number of states in A. As we will see, however, it tends
to perform extremely well on lattices arising in speech recognition tasks. We now
briefly discuss the algorithm and its performance.

34 · A. L. Buchsbaum and R. Giancarlo

q

q

q

q
0

1

2

3

a/1

b/4

a/3

b/1

b/1

b/3

b/3

b/5

(a)

{(q1,2),(q2,0)}

{(q1,0),(q2,3)}

{(q3,0)}q
0

a/1

b/1 b/3

b/1

(b)

Fig. 8. (a) A nondeterministic weighted automaton. (b) The result of applying Mohri’s de-
terminization algorithm to the automaton of (a). This is derived from Figures 11–12 of Mohri
[1997a].

Intuitively, the determinization algorithm devised by Mohri [1997a] is a general-
ization of the determinization procedure for nondeterministic finite automata. We
briefly outline the algorithm on an example assuming that we are working with the
min-sum semiring, although the algorithm will work for any commutative semiring.
Consider the weighted automaton in Figure 8(a); its determinization proceeds as
follows. From the initial state q0, we can reach states q1 and q2 using the input
symbol a. Analogous to the determinization of finite-state automata, we establish a
new state {q1, q2} reachable from q0 with input symbol a. Since we are interested in
minimum weight paths, we assign weight 1 to the new arc. Now, however, we have
remainder weights of 2 for transition q0 → q1 and 0 for the transition q0 → q2. We
save those remainders in the new state by encoding it as {(q1, 2), (q2, 0)}. Similarly,
from state q0 in the original automaton, we can reach states q1 and q2 via symbol b.
Again the minimum weight among these transitions is 1, so we assign this weight
to the new arc, and encode the remainder weights (0 and 3, respectively) in the
new state {(q1, 0), (q2, 3)}. Now, consider state {(q1, 2), (q2, 0)} in the new machine
and input symbol b. Notice that, in the automaton of Figure 8(a), we can reach
state q3 from both q1 and q2. For each such original arc, we consider the sum of
the weight of the arc and the remainder associated with the original source state
encoded in state {(q1, 2), (q2, 0)} in the new machine; taking the minimum among
those values gives us the weight of 1 for the new arc. Since there is only one desti-
nation state (q3) in the original machine, there is no new remainder, so we encode
the new destination state as {(q3, 0)}. Similarly, we construct an arc with weight
3 on symbol b from {(q1, 0), (q2, 3)} to {(q3, 0)}. The end result is shown in Figure
8(b).

The relevance to speech recognition of this algorithm is as follows. Consider
the word lattice in Figure 9, and assume that we are working with the min-sum
semiring. This word lattice comes from the output of the word recognition module
in Figure 1 for the utterance, “What flights depart from Baltimore?” (That the
lattice is illegible is partly the point; we hope to reduce its size via determinization.)
The lattice must be intersected with the language model to obtain the final answer.

Algorithmic Aspects in Speech Recognition: An Introduction · 35

0 1
what/7.742

7

what/2.633

8

what/8.935

10

what/5.834

14

what/3.133

2

which/7.635

4

which/2.665

9

flights/1.193

12

flights/6.218

16

flights/7.536

19

flights/8.647

21

flights/4.152

flights/8.225

flights/9.270

flights/7.953

flights/3.458
11

flights/3.200

15

flights/0.499

flights/0

flights/5.025

flights/6.342

flights/7.454

flights/2.958

flights/5.025

flights/6.342

flights/0

flights/8.771

flights/7.454

flights/2.958

flights/0

flights/7.371

flights/9.202

flights/5.518

3

flights/2.346

flights/9.794

flights/8.380

flights/4.696

5

flights/4.769

6

flights/1.524

13

depart/5.025

20

depart/7.454

22

depart/7.536

23

depart/5.158

27

depart/2.958

28

depart/6.954

29

depart/6.269

departs/9.382

30

depart/4.075

17

departs/8.652

18

departs/8.413

depart/0

depart/3.195

depart/2.199

depart/1.929

depart/3.311

depart/1.116

departs/3.040

departs/2.310

departs/2.070

depart/0

depart/3.195

depart/1.929

depart/4.577

depart/2.199

depart/0

depart/3.311

depart/1.116

depart/5.025

depart/6.856

depart/7.749

depart/5.371

depart/3.172

depart/6.954

depart/6.483

depart/4.288

31

from/5.745

34

from/4.077

from/5.745

from/4.890

24

in/4.203

25

in/3.507

in/5.936

in/5.239

from/6.600

from/4.077

from/3.816

from/2.961

from/3.816

from/3.209

from/5.484

from/2.961

depart/5.025

depart/8.220

depart/7.224

depart/6.954

depart/8.336

depart/6.141

depart/6.856

depart/7.749

depart/5.371

depart/3.172

depart/8.785

depart/6.483

depart/4.288

depart/5.025

depart/8.220

depart/7.224

depart/6.954

depart/8.336

departs/9.382

depart/6.141

departs/8.652

departs/8.413

depart/7.454

depart/7.536

depart/5.158

depart/2.958

depart/9.383

depart/6.269

departs/11.81

depart/4.075

departs/11.08

departs/10.84

from/3.816

from/2.693

from/5.438

from/2.693

32/1.664
baltimore/0

37

baltimore/1.447

baltimore/0.087

35

baltimore/5.328

39/3.100baltimore/0

33/1.664
baltimore/0

26/0.451
baltimore/0

38/4.658
to/0

36/4.953
to/0

Fig. 9. A word lattice produced for the utterance, “What flights depart from Baltimore?”

36 · A. L. Buchsbaum and R. Giancarlo

0

1

what/2.633

2which/2.665

3
flights/0.499

4
flights/1.524

5
depart/2.958

6

departs/10.84

7depart/3.172

8

from/4.077
9

in/7.439

10
from/2.693

from/4.077

in/7.439

11/3.100baltimore/0

12/0.451
baltimore/0

13/3.026
baltimore/0

14/4.658

to/0.087

to/0.087

Fig. 10. The lattice resulting from the application of Mohri’s determinization algorithm to the
word lattice of Figure 9.

Among the many paths in the lattice that induce a given sentence, the path of min-
imum weight contains the critical information. If we consider the other paths that
induce the same sentence in Figure 9 to be redundant, then part of this redundancy
can be eliminated by determinization. (We give an intuitive explanation of this phe-
nomenon below.) Figure 10 shows the result of applying Mohri’s determinization
algorithm to the word lattice of Figure 9. The determinization of the given lat-
tice produces a smaller word lattice that preserves the critical information of the
original lattice, as desired. Obviously, if we use the smaller lattice, the intersection
with the language model will be faster. Extensive experiments have shown that,
when applied to lattices resulting from the various phases of speech recognition, the
determinization algorithm of Mohri [1997a] tends to run in linear time and produce
smaller lattices than the ones it takes in input. These time and reduction proper-
ties derive from the fact that the Mohri’s determinization process nicely captures
the intuitive meaning of redundancy for those graphs. Indeed, when we ignore the
weights on the arcs of the lattice in Figure 9, we obtain a directed acyclic graph
that has many isomorphic subgraphs. Moreover, since we are interested only in
keeping minimum paths, we can keep, among isomorphic subgraphs, the “lightest”
one. Matters are even further simplified because the topological structure of the
acyclic graph is very much like that of a tree. The choice of the semiring is also
very important. Indeed, for the determinization of the lattice in Figure 9, we are
using the min-sum semiring. Therefore, for each string z accepted by the lattice,
only the path of minimum cost that induces z is relevant, and the other paths can
be discarded. An analogous fact does not hold for the sum-times semiring.

Research Area 8.1. Determine when and why determinization of sequential
weighted automata can be performed efficiently. That is, characterize the essential
properties of the automata that allow efficient determinization. In particular, give
formal proof that Mohri’s algorithm will always work well for lattices arising in
speech recognition (or show where it might produce a blowup in automata size).

8.2 Minimization

Minimization is the following problem. Given a weighted automaton A, compute
the “smallest” automaton equivalent to A. Here matters are somewhat unclear,

Algorithmic Aspects in Speech Recognition: An Introduction · 37

and much work is still needed. We first review the state of the art for string-to-
string transducers, of which weighted automata comprise a special case. Given a
string-to-string transducer T , Reutenauer and Schützenberger [1991] have devised
a method to construct a new transducer that performs the same transduction as
T and that is minimal with respect to certain constraints. Roche [1995] presents a
different approach that leads to a transducer with an exponentially smaller number
of states than that of Reutenauer and Schutzenberger. Mohri [1994] also gives
a minimization procedure, but his works only for special (although important)
classes of transducers. The methods of Roche and Mohri have been used with
demonstrated success in natural language processing; Roche [1995], for example,
uses his methods to produce a small representation of a French dictionary. Mohri’s
algorithm, however, is the only one with proven asymptotic results. (Breslauer
[1996] gives recent improvements to this algorithm.) As an aside, we note that
methods for the representation of dictionaries and phonetic rules is a very active
area of experimentation [Roche 1993; Silberztein 1993]. It is also worth mentioning
that the minimization algorithm of Roche [1995] is based on the computation of an
approximate solution to an NP-Hard problem. Therefore, it is a natural candidate
for experimentation. For weighted automata, Mohri [1997a] provides an algorithm
that works for sequential weighted automata; it is a specialization of his algorithm
for the minimization of string-to-string transducers [Mohri 1994]. We now briefly
discuss the algorithm and its performance.

Given a weighted sequential automaton A, the minimization algorithm devised
by Mohri [1997a] consists of two stages. One is extraction. During this phase
a new weighted sequential automaton A′ is built; A′ differs from A only in the
weights on its transitions. Then, A′ is treated as a deterministic automaton with
arcs labeled by elements of two alphabets, one of strings and the other of weights.
The standard minimization procedure for automata is applied to A′ [Hopcroft and
Ullman 1979]. One can show [Mohri 1997a] that the result is the most compact
weighted automaton equivalent to A. Figure 7 actually results from applying the
minimization algorithm to the word lattice in Figure 10.

We briefly outline the extraction phase. For each state q of A, let d(q) be the
minimum among the weights of all strings w that reach the final state from q. The
new automaton A′ is defined in exactly the same way as A, except that the weight
on the transition (q, a) is given by β+γ−d(q). β is the weight on the transition (q, a)
of A, and γ = d(δ(q, a)). One can easily show [Mohri 1997a] that extraction reduces
to the computation of a single-source shortest path with nonnegative arc lengths
(the source being the final state). Therefore, we can use standard algorithms for
this problem [Cormen et al. 1991].

It should be clear that minimization of weighted sequential automata is relevant
to speech recognition for the same reasons as is determinization, although the lat-
tice size reductions achieved by minimization do not seem as impressive as those
obtained by determinization.

Research Area 8.2. The minimization algorithm of Mohri [1997a] (and also
Breslauer [1996]) produces automata that are the smallest possible but only for
special classes of transducers. The algorithm of Roche [1995] is more general but
lacks proven asymptotic results. Can these results be unified?

38 · A. L. Buchsbaum and R. Giancarlo

8.3 Comparison to Viterbi Searching

In the previous sections we have outlined methods for reducing the size of a given
lattice while preserving the relevant information—i.e., the minimum cost source-
to-sink path. Those methods work because the lattice is given a priori. Moreover,
the strings that such a lattice accepts form a finite, albeit large set. We are there-
fore in a static situation, in which the elimination of redundancy—i.e., irrelevant
information—consists of eliminating, for any string x accepted by the lattice, the
paths that induce x and that are not guaranteed to be minimal. Technically, this
intuition can yield a definition of a right invariant equivalence relation that we can
use to minimize the lattice [Mohri 1997a].

Now recall from Section 5.2 that we have formulated the problem of minimizing
a HMM HD so that the minimized HMM H ′

D preserves the Viterbi computation.
The difference between minimization of lattices and the corresponding problem for
HMMs is that, while the former are static objects, HMMs are used as dynamic
objects. That is, the Viterbi computation must provide an optimal path for any
string x given as input. That string is usually given on-line, and the number of
strings matched by an HMM is infinite.

When we discussed the graph theoretic approach to the Viterbi computation in
Section 5.1, we noted that a fundamental difference between Dijkstra-type shortest-
path algorithms and Viterbi-type shortest-path algorithms is that the costs of arcs
in the former are fixed a priori, whereas the costs of arcs in the latter vary with the
input. An analogous situation seems to hold for the language theoretic approach.
That is, lattices are used as static objects, while HMMs are used as dynamic ones.

9. DISCUSSION

We have formulated some core problems in speech recognition as search problems
on very large, weighted graphs. We conclude here with some general comments
about this viewpoint; in Appendix A, we review some of the specific open problems
mentioned in this paper.

If one uses the layered approach of Section 4.3, one can consider speech recogni-
tion as follows. There is a very large, static collection of vertices. Each utterance
induces a set of weighted, labeled arcs on the vertex set. The task is to find (or
approximate “well”) the shortest path through the graph. The problem is that the
graph is enormous and also contains redundancies—indeed nested redundancies—
that result in repetition of the same shortest-path computations in many different
places in the graph. How to reduce the graph or otherwise direct the search so as
to avoid most of the graph that does not contribute to the solution, as well as how
to exploit the redundancies, are key problems.

If one simply computes directly on the individual HMMs rather than “flatten-
ing” the graph as above, one faces the problem that arc weights are dynamic with
respect to the input sequence. Furthermore, the arcs in each model represent dis-
tinct portions of a hypothetical input, whereas the input sequence itself is not
explicitly partitioned. Therefore, some mechanism, incurring additional computa-
tional complexity per arc traversal, must determine the best ways to match arcs
to subsequences of the input. How to speed computation over the HMMs, perhaps
exploiting their topologies, is a key problem.

Algorithmic Aspects in Speech Recognition: An Introduction · 39

Pereira et al. [1994, 1997] consider speech recognition as a composition of weighted
finite-state transducers. In their approach, the search problem becomes one of com-
puting on-line multiway “joins” of automata, each of which models various phases
in the recognition process. Here again, the transducers become extremely large
and contain information that is mostly redundant. Techniques to determinize and
minimize these transducers are critical.

Finally, we revisit the decision to concentrate mainly on search issues at the
expense of signal processing and acoustics. Consider the approximation

Pr(A|W) ≃ Pr(A1|W1) · · ·Pr(Ak|Wk) Pr(W1, . . . ,Wk), (14)

where A = (A1, . . . , Ak) and W = (W1, . . . ,Wk). That is, the probability of observ-
ing some sequence A of acoustic feature vectors given that utterance W has been
spoken can be approximated by the product of the corresponding probabilities for
each unit in the utterance and the joint probability of all the units. (For example,
the utterance could be a sentence, and we could regard the words as individual
units.) Approximation 14 is crucial to the maximum likelihood paradigm, in that
even the fastest, most accurate algorithms for solving Equations 3–4 depend on the
validity of this approximation to guarantee good results. Boothroyd and Nittrouer
[1988], building on the work of Fletcher and Galt [1950] and of Boothroyd [1968],
show that Approximation 14 is valid when the units are allophones, which are de-
coded by the human auditory system before meaning is extracted (in the words of
Allen [1996]). Unfortunately, it is not known yet how to model allophones robustly,
so parameterized models (banks-of-filters, linear predictive coding (LPC) coeffi-
cients, LPC cepstral coefficients, weighted cepstral coefficients, etc.) have been
developed instead; the signal processing module then provides the parameters to
plug into the model. Devising such models is a crucial application of signal pro-
cessing and acoustics to speech recognition. Again we refer the reader to Rabiner
and Juang [1993] for an extensive treatment of these issues.

ACKNOWLEDGMENTS

Our understanding of the material in this paper is due in large part to an in-
terdisciplinary seminar that met for several months, in which many papers and
problems in speech recognition were discussed. We thank the other participants
in those sessions—Hiyan Alshawi, Enrico Bocchieri, Edith Cohen, Emerald Chung,
Jim Hieronymus, Andre Ljolje, Yossi Matias, Fernando Pereira, and Mike Riley—
for their advice and opinions. We thank Jont Allen, Jon Bentley, David Johnson,
Fred Juang, Mehryar Mohri, Ravi Sethi, Bob Tarjan, and Mihalis Yannakakis for
their comments and advice. Finally, we thank the anonymous referees for many
constructive suggestions that improved the presentation of this paper.

REFERENCES

Allen, J. B. 1996. Harvey Fletcher’s role in the creation of communication acoustics. Jour-

nal of the Acoustical Society of America 99, 4, 1825–39.

Bahl, L. R., Bakis, R., Cohen, P. S., Cole, A. G., Jelinek, F., Lewis, B. L., and Mercer,

R. L. 1980. Further results on the recognition of a continuously read natural corpus. In
Proc. IEEE Int’l. Conf. on Acoustics, Speech, and Signal Processing ’80 , Volume 3 (1980),
pp. 872–5.

40 · A. L. Buchsbaum and R. Giancarlo

Bahl, L. R., Bakis, R., de Souza, P. V., and Mercer, R. L. 1988. Obtaining candidate

words by polling in a large vocabulary speech recognition system. In Proc. IEEE Int’l.

Conf. on Acoustics, Speech, and Signal Processing ’88 , Volume 1 (1988), pp. 489–92.

Bahl, L. R., Gennaro, S. V. D., Gopalakrishnan, P. S., and Mercer, R. L. 1993. A fast
approximate acoustic match for large vocabulary speech recognition. IEEE Transactions

on Speech and Audio Processing 1, 59–67.

Bahl, L. R., Gopalakrishnan, P. S., Kanevski, D., and Nahamoo, D. 1989. Matrix fast
match: A fast method for identifying a short list of candidate words for decoding. In Proc.

IEEE Int’l. Conf. on Acoustics, Speech, and Signal Processing ’89 , Volume 1 (1989), pp.
345–8.

Bahl, L. R., Jelinek, F., and Mercer, R. L. 1983. A maximum likelihood approach
to continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence PAMI-5, 179–190.

Baum, L. E. and Eagon, J. A. 1967. An inequality with applications to statistical estima-
tion for probabilistic functions of a Markov process and to a model for ecology. Bulletin of

the American Mathematical Society 73, 360–3.

Baum, L. E. and Sell, G. R. 1968. Growth transformations for functions on manifolds.
Pacific Journal of Mathematics 27, 211–27.

Bellman, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16, 87–90.

Berstel, J. 1979. Transduction and Context-Free Languages, Volume 38 of Leitfaden der

angewandten Mathematik und Mechanik LAMM. Springer-Verlag.

Berstel, J. and Reutenauer, C. 1988. Rational Series and Their Languages, Volume 12
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag.

Boothroyd, A. 1968. Statistical theory of the speech discrimination score. Journal of the

Acoustical Society of America 43, 2, 362–7.

Boothroyd, A. and Nittrouer, S. 1988. Mathematical treatment of context effects in
phoneme and word recognition. Journal of the Acoustical Society of America 84, 1, 101–
14.

Breslauer, D. 1996. The suffix tree of a tree and minimizing sequential transducers. In

Proc. 7th Symposium on Combinatorial Pattern Matching (1996), pp. 116–29.

Choffrut, C. 1978. Contributions á l’étude de quelques familles remarquables de function
rationnelles. Ph. D. thesis, LITP-Université Paris 7, Paris, France.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1991. Introduction to Algorithms.
The MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge, MA.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische

Mathematik 1, 269–271.

Edmonds, J. and Karp, R. M. 1972. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM 19, 248–64.

Eilenberg, S. 1974. Automata, Languages, and Machines, Volume A. Academic Press, San
Diego.

Elgot, C. C. and Mezei, J. E. 1965. On relations defined by generalized finite automata.
IBM Journal of Research and Development 9, 47–68.

Fletcher, H. and Galt, R. H. 1950. The perception of speech and its relation to telephony.
Journal of the Acoustical Society of America 22, 2, 89–151.

Ford, L. R. and Fulkerson, D. R. 1962. Flows in Networks. Princeton University Press,

Princeton, NJ.

Gabow, H. N. 1985. Scaling algorithms for network problems. Journal of Computer and

System Sciences 31, 148–68.

Gabow, H. N. and Tarjan, R. E. 1989. Faster scaling algorithms for network problems.
SIAM Journal on Computing 18, 1013–36.

Hart, P. E., Nilsson, N. J., and Raphael, B. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems, Science, and Cy-

bernetics 4, 100–7.

Algorithmic Aspects in Speech Recognition: An Introduction · 41

Hopcroft, J. E. and Ullman, J. D. 1979. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading,
MA.

Jelinek, F., Bahl, L. R., and Mercer, R. L. 1975. Design of a linguistic statistical
decoder for the recognition of continuous speech. IEEE Transactions on Information The-

ory IT-21, 250–6.

Jelinek, F., Mercer, R. L., and Roukos, S. 1992. Principles of lexical language modeling
for speech recognition. In S. Furui and M. M. Sondhi Eds., Advances in Speech Signal

Processing, Chapter 21, pp. 651–99. New York: Marcel Dekker.

Kenny, P., Hollan, R., Gupta, V. N., Lenning, M., Mermelstein, P., and O’Shaughnessy,

D. 1993. A∗-Admissible heuristics for rapid lexical access. IEEE Transactions on Speech

and Audio Processing 1, 49–57.

Kuich, W. and Salomaa, A. 1986. Semirings, Automata, Languages, Volume 5 of EATCS

Monographs on Theoretical Computer Science. Springer-Verlag.

Lacouture, R. and Mori, R. D. 1991. Lexical tree compression. In Proc. 2nd Euro. Conf.

on Speech Communication and Technology, Volume 2 (1991), pp. 581–4.

Lee, K.-F. 1990. Context-dependent phonetic hidden Markov models for speaker-
independent continuous speech recognition. In A. Waibel and K.-F. Lee Eds., Readings

in Speech Recognition, pp. 347–65. Morgan Kaufman.

Ljolje, A. and Riley, M. D. 1992. Optimal search recognition using phone recognition
and lexical access. In Proc. 2nd Int’l. Conf. on Spoken Language Processing (1992), pp.

313–316.

Lowerre, B. and Reddy, R. 1980. The Harpy speech understanding system. In Trends in

Speech Recognition, Chapter 15, pp. 340–60. Englewood Cliffs, NJ: Prentice-Hall.

Mohri, M. 1994. Minimization of sequential transducers. In Proc. 5th Symposium on Com-

binatorial Pattern Matching, Volume 807 of Lecture Notes in Computer Science (1994),
pp. 151–63.

Mohri, M. 1997a. Finite-state transducers in language and speech processing. Computa-

tional Linguistics 23, 2, 269–311.

Mohri, M. 1997b. On the use of sequential transducers in natural language processing. In
Finite-State Language Processing. MIT Press.

Pereira, F. and Riley, M. 1997. Speech recognition by composition of weighted finite
automata. In Finite-State Language Processing. MIT Press.

Pereira, F., Riley, M., and Sproat, R. 1994. Weighted rational transductions and their
application to human language processing. In Proc. ARPA Human Language Technology

Conf. (1994), pp. 249–54.

Pickering, J. B. and Rosner, B. S. 1993. The Oxford Acoustic Phonetic Database on

Compact Disk. Oxford University Press.

Rabiner, L. and Juang, B.-H. 1993. Fundamentals of Speech Recognition. Prentice Hall
Signal Processing Series. Prentice Hall, Englewood Cliffs, NJ.

Rabiner, L. R. 1990. A tutorial on hidden Markov models and selected applications in
speech recognition. In A. Waibel and K.-F. Lee Eds., Readings in Speech Recognition,
pp. 267–96. Morgan Kaufman.

Reutenauer, C. and Schützenberger, M.-P. 1991. Minimization of rational word func-
tions. SIAM Journal on Computing 20, 4, 669–85.

Riley, M. D., Ljolje, A., Hindle, D., and Pereira, F. C. N. 1995. The AT&T 60,000
word speech-to-text system. In Proc. 4th Euro. Conf. on Speech Communication and Tech-

nology, Volume 1 (1995), pp. 207–210.

Roche, E. 1993. Analyse syntaxique transformationelle du francais par transducteurs et
lexique-grammaire. Ph. D. thesis, LITP-Université Paris 7, Paris, France.

Roche, E. 1995. Smaller representations for finite-state transducers and finite-state au-
tomata. In Proc. 6th Symposium on Combinatorial Pattern Matching, Volume 937 of Lec-

ture Notes in Computer Science (1995), pp. 352–65.

42 · A. L. Buchsbaum and R. Giancarlo

Schwartz, R., Chow, Y., Roucos, S., Krasner, M., and Makhoul, J. 1984. Improved

hidden Markov modeling of phonemes for continuous speech recognition. In Proc. IEEE

Int’l. Conf. on Acoustics, Speech, and Signal Processing ’84 , Volume 3 (1984), pp. 35.6.1–
4.

Shoup, J. E. 1980. Phonological aspects of speech recognition. In Trends in Speech Recog-

nition, Chapter 6, pp. 125–38. Englewood Cliffs, NJ: Prentice-Hall.

Silberztein, M. 1993. Dictionnaires électroniques et analise automatique de textes: le
systéme intex. Ph. D. thesis, Masson, Paris, France.

Soong, F. K. and Huang, E.-F. 1991. A tree-trellis based fast search for finding the N
best sentence hypotheses in continuous speech recognition. In Proc. IEEE Int’l. Conf. on

Acoustics, Speech, and Signal Processing ’91 , Volume 1 (1991), pp. 705–8.

Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory IT-13, 260–9.

Waibel, A. and Lee, K.-F. Eds. 1990. Readings in Speech Recognition. Morgan Kaufmann.

Weber, A. and Klemm, R. 1995. Economy of description for single-valued transducers.
Information and Computation 118, 327–40.

APPENDIX

A. SUMMARY OF RESEARCH AREAS

Here we summarize the earlier statements of open algorithmic problems. We give
page numbers for reference back to the full problem statements.

Research Area 4.1, page 13. Devise faster methods to compute the probability
that a HMM matches a given observation. In particular, can the topology of the
HMM be exploited towards this end?

Research Area 4.2, page 19. Devise algorithms to reduce the size of a HMM.
This is analogous to the determinization and minimization problems on finite-state
automata.

Research Area 5.1, page 23. Devise faster search algorithms to solve the Viterbi
equation (Equation 7). As with Research Area 4.1, investigate how to characterize
and exploit the particular graph topologies that arise in speech recognition.

Research Area 5.2, page 24. Devise an analogue to the CSP scaling technique
that would apply to VSP.

Research Area 6.1, page 28. Investigate the potential for admissible heuristics
that will significantly speed computation of the A∗ and SEARCH algorithms, or
determine how to measure theoretically the error rates of fast but inadmissible
heuristics.

Research Area 8.1, page 36. Characterize the essential properties of sequential
weighted automata that permit efficient determinization.

Research Area 8.2, page 37. Unify the results given by Mohri and Breslauer
(provably good minimization for special cases of sequential weighted automata)
with those of Roche (minimization for more general cases of sequential weighted
automata without proven asymptotic size reductions).

B. SOURCES OF CODE AND DATA

In this section we give some pointers to sources of code, data, etc., of interest
to anyone who wants to experiment with speech recognition. Rather than list

Algorithmic Aspects in Speech Recognition: An Introduction · 43

points of contact for individual data sets, programs, etc., we instead give pointers
to bigger and therefore presumably more durable collections of information. Note
that development of speech products is now a business; collection of speech and
text corpora is also extremely labor intensive. Therefore, most programs and data
are not available without cost.

B.1 Code

Most commercially available speech recognition products are tailored more towards
applications developers than researchers. One product, though, called HTK, pro-
vides a more low-level toolkit for experimenting with speech recognition algorithms
in addition to an application-building interface. It is available from Entropic Re-
search Lab, Inc.

http://www.entropic.com/htk/

The finite-state toolkit developed by Pereira et al. (cf. Section 7.2) can be ob-
tained by sending electronic mail to

fsm@research.att.com.

B.2 Data

A large variety of speech and text corpora is available from the Linguistic Data
Consortium.

http://www.ldc.upenn.edu/

Paying a membership fee to join the LDC entitles one to free corpora that were
released during that year (and reduced prices on corpora from prior years); non-
members pay more for corpora. The following are some of the commonly used
speech corpora that they have.

TIMIT Acoustic-Phonetic Continuous Speech Corpora.

RM Resource Management Corpora.

ATIS Air Travel Information System.

CSR Continuous Speech Recognition.

SWITCHBOARD Switchboard Corpus of Recorded Telephone Conversations.

Among the commonly used text corpora they have are the following.

PENN TREEBANK The Penn Treebank Project, Release 2.

UN United Nations Parallel Text Corpus (Complete).

SPANISH NEWS Spanish News Text Collection.

Another source of speech data is the Oxford Acoustic Phonetic Database on
CDROM, published by Pickering and Rosner [1993]. It is a set of two CDs that con-
tain digitized recordings of isolated lexical items plus isolated monophthongs from
each of the following eight languages/dialects: American English, British English,
French, German, Hungarian, Italian, Japanese, and Spanish.

44 · A. L. Buchsbaum and R. Giancarlo

B.3 Commercial Products

As mentioned above, most commercial speech recognition products are tailored
more towards applications developers than researchers. Still, those wishing to ex-
periment with the human factors issues of speech recognition (which we did not
discuss at all in this paper) might be interested in the following products.

(1) AT&T Watson Advanced Speech Applications Platform.
http://www.att.com/aspg/blasr.html

(2) BBN Speech Products.
http://www.bbn.com/speech prods/

(3) DragonDictate from Dragon Systems, Inc.
http://www.dragonsys.com/

B.4 General Information

Finally, two free, on-line source of information are of interest. First is the USENET
newsgroup

comp.speech.

While the signal-to-noise ratio of most USENET newsgroups is pretty low, the
comp.speech list of frequently asked questions (FAQ), which is posted at least
monthly, does provide an extensive, well-maintained list of pointers to other on-line
sources of information on speech processing. The current version of the FAQ can
be found at

http://www.speech.cs.cmu.edu/comp.speech/.

Second is the Free Speech Journal, at

http://www.cse.ogi.edu/CSLU/fsj/home.html,

an on-line, peer-reviewed journal covering human language technology.

C. GLOSSARY

ARPABET Standard phonetic alphabet used in ARPA projects.

CSP Classical shortest-path problems.

CSR Continuous speech recognition.

DAG Directed, acyclic graph.

HMM Hidden Markov model.

IWR Isolated word recognition.

LPC Linear predictive coding.

MS Markov source.

VSP Shortest-path problem as solved by the Viterbi algorithm.

