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Abstract. We introduce the tree cross-product problem, which abstracts
a data structure common to applications in graph visualization, string
matching, and software analysis. We design solutions with a variety of
tradeoffs, yielding improvements and new results for these applications.

1 Introduction

Range searching is a classic problem in data structure design [8, 10, 12, 23, 29]. It
is typically defined on a ground set, S, of ordered tuples (x1, . . . , xd) that are to
be queried by ranges, which are specified by intersections of tuples of intervals
on the coordinates. A simple query asks if such a range R contains any point of
S, and a reporting query asks for all points of S inside R.

We introduce and study an interesting variant of range searching, which we
call range searching over tree cross products. Given a priori are d rooted trees,
T1, . . . , Td, and a ground set E of tuples (x1, . . . , xd), such that xi ∈ Ti, 1 ≤ i ≤ d.
The nodes of the trees and the set E define a d-partite hypergraph G. We wish
to perform several possible queries on tuples of nodes u = (u1, . . . , ud), such
that ui ∈ Ti, 1 ≤ i ≤ d. Analogous to a simple range searching query, an edge
query determines if there is a hyperedge in G that connects descendents of all the
ui nodes. We say that such a hyperedge induces u. Likewise, a reporting query
determines all hyperedges in G that induce u. An expansion query determines,
for each y that is a child of some designated ui, whether the tuple formed by
replacing ui with y in u is induced by a hyperedge in G. The goal is to preprocess
the trees and hypergraph so that these queries can be performed efficiently on-
line. Dynamic variants admit updates to the trees and hypergraph.

1.1 Motivating Applications. We explore four applications of tree
cross products. (We define the applications formally in Section 5.) First is the
hierarchical graph-view maintenance problem, which has applications in graph
visualization [7, 9]. We are given a rooted tree, T , and a graph, G, of edges
superimposed between leaves of T . At any point, there exists a view, U , of G,
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which is a set of nodes of T such that each leaf of T has precisely one ancestor in
U . The induced graph, G/U , is obtained by contracting each vertex in G into its
representative in U , removing multiple and loop edges. The problem is to main-
tain G/U as nodes in U are expanded (replaced by their children) or contracted
(replace their children). Buchsbaum and Westbrook [7] show how to expand
and contract nodes in U in optimal time for an unweighted graph G: linear in
the number of changes to G/U . The tree cross-product problem generalizes the
graph-view problem. Our approach is orthogonal to that of [7], however.

Two more applications involve string matching. In text indexing with one
error, we want to preprocess a string T of length n so that we can determine
on-line all the occurrences of a pattern P of length m with one error (using
Hamming or Levenshtein [19] distance). This problem has applications in pass-
word security [20] and text filtering [3, 4, 22, 24]. We improve on the work of
Ferragina, Muthukrishnan, and de Berg [11] and Amir et al. [2], whose solution
traverses two suffix trees in tandem, periodically performing analogous reporting
queries. Grossi and Vitter [15] use a similar strategy to report contiguous entries
in compressed suffix arrays, and we also improve their bounds.

Finally, we consider finding hammocks in directed graphs. These are regions
of nodes that are separated from designated source and sink nodes by the equiv-
alent of articulation points. Hammocks have been studied in the context of com-
piler control-flow analysis [17], in which solutions to the problem of finding all
hammocks off-line are known. We present the first results for finding hammocks
on-line, with an application to software system analysis [5].

1.2 Our Results. We contribute a formal definition of tree cross-product
operations, and we relate them to range searching. Rather than use classical
range search techniques, we exploit the structure of the input to devise a frame-
work based upon simpler search structures. Let n =

∑d
i=1 |Ti|, m = |E|, and

k be the number of edges reported by a reporting or expansion query. Using
O(m log

d−1
2 n) (rsp., O(m(log log n)d−1)) space, we can perform edge queries in

O(2d−1 log n/ log log n) (rsp., O(log n(log log n)d−2)) time; reporting queries add
O(k) to the edge-query time, and expansion queries multiply the edge-query
time by O(k). In the dynamic case, we can perform insertions and deletions of
hyperedges in G in O(log

d+1
2 n/ log log n) (rsp., O(log n(log log n)d−2)) time. In

the two-dimensional case, note that we can achieve logarithmic query and up-
date times in almost-linear space. No classical range searching result provides the
same bounds. In the static case, the query times improve by log n/(log log n)2

factors, and the preprocessing time equals the space. All are deterministic, worst-
case bounds. Our framework allows simple implementations for practical cases,
using nothing more sophisticated than balanced search trees.

Applied to graph views, we present a dynamic solution that improves the
results of Buchsbaum and Westbrook [7] by factors of log2 n/ log log n in space (to
O(m log log n)) and log2 n in update time (to O(log n)). The cost is a log n factor
penalty in expand time; contract remains optimal. For the static problem, the
space (and preprocessing time) reduction is the same, while the expand penalty
is only (log log n)2. All of our bounds are deterministic, worst-case, whereas the
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Fig. 1. Tree cross products for d = 2. Graph edges are shown as solid arcs and cor-
responding points; two potential induced edges are shown as dashed arcs and corre-
sponding rectangular ranges.

prior update and preprocessing time bounds [7] are expected. For text indexing
with one error, we improve all the bounds of Amir et al. [2] by log n factors.
For compressed suffix-array traversal, we improve the additional reporting time
of Grossi and Vitter [15] by a factor of log n/(log log n)2. For on-line hammock
finding, we give a data structure that uses O(n

√
log n) (rsp., O(n log log n)) space

and preprocessing time and returns hammocks of size k in O(log log n+k) (rsp.,
O((log log n)2 + k)) time each; these are the first such results.

Table 1 in Section 4 summarizes our results.

2 Tree Cross Products

Let G = (V (G), E(G)) denote a (hyper)graph with vertex set V (G) and edge
set E(G). Let T be a rooted tree. For v ∈ V (T ): let children(v) be the set of
children of v, and let desc(v) be the set of descendents of v. Given d rooted
trees, T1, . . . , Td, consider some d-partite hypergraph, G, such that V (G) =⋃d

i=1 V (Ti) and E(G) ⊆ V (T1)×· · ·×V (Td), which we also write
∏d

i=1 V (Ti). G is
a subset of the cross product of T1, . . . , Td. Denote by u an element (u1, . . . , ud) ∈∏d

i=1 V (Ti). Define E(u) to be the set {x ∈ E(G) : xi ∈ desc(ui), 1 ≤ i ≤ d},
i.e., the set of hyperedges of G connecting descendents of each component of u.

Let I be the hypergraph with vertex set
⋃d

i=1 V (Ti) and edge set {u :
|E(u)| > 0}. We call I an induced hypergraph and hyperedges of I induced
hyperedges, because they are induced by the cross-product subset G of the
Tis. (See Fig. 1.) If each hyperedge e ∈ E(G) has a weight, w(e) ∈ G, from
a given abelian group, (G,¯), then the weight of u ∈ E(I) is defined to be
w(u) =

⊙ {w(x) : x ∈ E(u)}.
Given T1, . . . , Td, and G, the tree cross-product problem is to perform on-line

the following tree cross-product operations on tuples u ∈ ∏d
i=1 V (Ti).

edgeQuery(u). Determine if u ∈ E(I).
edgeReport(u). Determine E(u).
edgeWeight(u). Determine w(u) (undefined if u 6∈ E(I)).
edgeExpand(u, j), where 1 ≤ j ≤ d. For each x ∈ children(uj), determine if

(u1, . . . , uj−1, x, uj+1, . . . , ud) ∈ E(I).



We consider the static version of the problem and also one in which hyper-
edges can be added and deleted. Although we can implement edgeExpand(u, j)
as an appropriate collection of edgeQuery(·) operations, we demonstrate that
considering edgeExpand(u, j) as a primitive can lead to more efficient solutions.

We denote by T the forest containing T1, . . . , Td, and define n = |V (G)| =
|V (T )|, and m = |E(G)|. For v ∈ V (T ): let depth(v) be the depth of v; let p(v)
be the parent of v; and let leaves(v) be the set of leaf descendents of v. Let
depth(T ) = maxv∈V (T ) depth(v). We assume T is given explicitly, although our
methods extend when it is implicitly defined by depth(·), p(·), children(·), etc.

In an O(n)-time preprocessing phase, we perform postorder traversals of
T1, . . . , Td so that each node is assigned its postorder number (ordinally from
1 for each tree) and depth. We abuse notation and use u itself to denote the
postorder number of node u in its respective tree. For any node u ∈ V (T ),
define min(u) = min{x : x ∈ desc(u)} and max(u) = max{x : x ∈ desc(u)}.

3 A Range Searching Framework

We first assume d = 2 (and discuss G in terms of a graph with edges of the
form (u, v)) and later extend our solutions to higher dimensions. Determining
if (u, v) ∈ E(I) can be viewed as a two-dimensional range query. Consider a
|V (T1)| × |V (T2)| integral grid, with a point (x, y) for each edge (x, y) ∈ E(G),
as shown in Fig. 1. E(u, v) corresponds precisely to the points in the range
([min(u),max(u)], [min(v),max(v)]). A straightforward solution applies classical
range searching results, but this ignores the structure imposed by T .

Each of T1 and T2 defines only O(n) one-dimensional subranges that can
participate in any two-dimensional query. To exploit this structure, we store
a set S(u) with each node u ∈ V (T ), which contains the far endpoints of all
graphs edges incident on vertices in desc(u). For u ∈ V (T ), we maintain the
invariant that S(u) = {y : (x, y) ∈ E(G) ∨ (y, x) ∈ E(G), x ∈ desc(u)}. Each
y ∈ S(u) is thus in the tree other than that containing u. The operations on S(u)
are insert(S(u), y), delete(S(u), y), and succ(S(u), y). Operation succ(S(u), y)
returns the successor of y in S(u), or ∞ if there is none.

Thus, (u, v) is an induced edge of I if and only if (1) u and v are in separate
trees, and (2) succ(S(u), min(v) − 1) ≤ max(v). By the invariant that defines
S(u), test (2) succeeds if there is an edge from a descendent of u to one of v.
Equivalently, test (2) can be replaced by (2′) succ(S(v), min(u)− 1) ≤ max(u).

To implement edgeExpand((u, v), u) (sym., edgeExpand((u, v), v)), we itera-
tively perform succ(S(v), min(x)−1) on the children x of u, in left-to-right order,
using the intermediate results to skip children with no induced edges. This is
more efficient than performing edgeQuery(x, v) for each x ∈ children(u).

To insert edge (x, y) into E(G), we perform insert(S(u), y) for each node u on
the x-to-root(T1) path and insert(S(v), x) for each node v on the y-to-root(T2)
path. Deletion of (x, y) substitutes delete(·, ·) for insert(·, ·).
Theorem 1. Let D = depth(T ). With O(mD log log n) space, we can insert
or delete an edge into G in O(D log log n) time and perform edgeQuery(·) in



O(log log n) time, edgeExpand(·, ·) in O(k log log n) time, and edgeReport(·) in
O(log log n + k) time, where k is the number of edges reported.

Proof (Sketch): We maintain each set S(u) as a contracted stratified tree
(CST) [25], linking the leaves to facilitate edgeReport(·). Each edge in E(G)
appears in at most 2D such sets. The number of succ(·, ·) operations for
edgeExpand(·, ·) is one plus the number of induced edges returned, because each
succ(·, ·) operation except the last returns a distinct induced edge. ut

Ferragina, Muthukrishnan, and de Berg [11] similarly solve the related point
enclosure problem on a multi-dimensional grid. They maintain a recursive search
structure on the grid, however, whereas we exploit the structure of T .

4 Decompositions and Higher Dimensions

4.1 Compressed Trees and Three-Sided Range Queries. When
D = ω(log n/ log log n), we can improve the space bound using compressed trees
[13, 16, 27]. Call tree edge (v, p(v)) light if 2|desc(v)| ≤ |desc(p(v))|, and heavy
otherwise. Each node has at most one heavy edge to a child, so deletion of the
light edges produces a collection of node-disjoint heavy paths.

The compressed forest, C(T ), is constructed (in O(n) time) by contracting
each heavy path in T into a single node. Each tree edge in C(T ) corresponds
to a light edge of T . Since there are O(log n) light edges on the path from any
node to the root of T , C(T ) has depth O(log n). Let h(ν), ν ∈ C(T ), denote the
heavy path of T that generates node ν. Define h−1(v) = ν for all v ∈ h(ν).

Consider node u ∈ T and the corresponding node µ = h−1(u) ∈ C(T ).
Number the nodes in the heavy path h(µ) top-down (u1, . . . , u`). For some 1 ≤
i ≤ `, u = ui. Associated with u are the corresponding node µ ∈ C(T ), the
value index(u) = i and a pointer, t(u), to u1 (which is a node in T ). We also
define t(µ) = u1, the top of the heavy path h(µ). For a node µ ∈ C(T ) and
vertex x ∈ desc(t(µ)), we define entry(µ, x) to be the maximum i such that
x ∈ desc(ui), where ui is the ith node in h(µ).

We now maintain the sets S(·) on nodes in C(T ), not T . For µ ∈ V (C(T )),
S(µ) = {(y, entry(µ, x)) : (x, y) ∈ E(G) ∨ (y, x) ∈ E(G), x ∈ desc(t(µ))}.
Consider u ∈ V (T1), v ∈ V (T2), µ = h−1(u), and ν = h−1(v). (u, v) is an
induced edge of I if and only if there exists some (y, d) ∈ S(µ) such that (a)
min(v) ≤ y ≤ max(v) and (b) index(u) ≤ d. (a) implies that y is a descendent
of v; (b) implies that y is adjacent to a descendent of a node at least as deep as
u on h(µ) and thus to a descendent of u. We can also query S(ν) symmetrically.

The update operations become insert(S(µ), (i, j)) and delete(S(µ), (i, j)).
The query operations are: tsrQuery(S(µ), (x1, x2), y), which returns an arbi-
trary pair (i, j) ∈ S(µ) such that x1 ≤ i ≤ x2 and j ≥ y, or ∅ if none ex-
ists; and tsrReport(S(µ), (x1, x2), y), which returns the set of such pairs. An
edgeQuery(u, v) is effected by tsrQuery(S(µ), (min(v),max(v)), index(u)), and
an edgeReport(u, v) by tsrReport(S(µ), (min(v),max(v)), index(u)) (or symmet-
rically on S(ν)). These queries are sometimes called three-sided range queries.



We implement edgeExpand((u, v), ·) iteratively, as in Section 3. To update
E(G), we use the t(·) values to navigate up T and the h−1(·) and index(·) values
to create the proper arguments to insert(·, ·) and delete(·, ·).
Theorem 2. Let p = min{depth(T ), log n}. With O(mp) space, we can insert
or delete an edge into G in O(p log n/ log log n) time and perform edgeQuery(·)
in O(log n/ log log n) time, edgeExpand(·, ·) in O(k log n/ log log n) time, and
edgeReport(·) in O(log n/ log log n + k) time; k is the number of edges reported.

Proof (Sketch): We maintain each S(µ) as a separate priority search tree
(PST) [29]. Each edge (x, y) ∈ E(G) appears in at most 2p such sets. During
an edgeExpand(·, ·), each tsrQuery(·, ·, ·) either engenders a new induced edge or
else terminates the procedure ut
Theorem 3. Let p = min{depth(T ), log n}. With O(mp) preprocessing time and
space, we can build a data structure that performs edgeQuery(·) in O(log log n)
time, edgeExpand(·, ·) in O(k log log n) time, and edgeReport(·) in O(log log n+k)
time, where k is the number of edges reported.

Proof (Sketch): We use a static three-sided range query data structure [12,
23]. To provide access to the leaves of the underlying data structures without
the high overhead (e.g., perfect hashing) of previous solutions [12, 23], we use
one array of size n. Each element i points to a CST that contains pointers to
the leaf representing i in each structure, indexed by structure, which we number
ordinally 1 to |V (C(T ))|. Each leaf in each underlying structure appears in one
such CST, so the total extra space and preprocessing time is O(n+ m log log n).
The initial access to a leaf requires an O(log log n)-time CST look-up. ut

4.2 Stratification. We further reduce the space by stratifying T into√
D strata of

√
D levels each, where D = depth(T ). Entries for an edge (u, v)

are made in set S(x) only for each x that is in ancestor of u (sym., v) in the
same stratum. Each node x at the top of a stratum (such that p(x) is in a
higher stratum) maintains a set S′(x) containing corresponding entries for edges
incident on descendents in deeper strata. Thus, each edge occurs in only O(

√
D)

sets. C(T ) is similarly stratified.
Every query on a set S(x) in the above discussions is answered by uniting

the results from the same queries on the new S(x) and S′(sr(x)), where sr(x) is
the ancestor of x at the top of x’s stratum.

Let the data structure underlying the S(·) sets (e.g., a CST or PST) use
S(m) space, Q(m) query time, R(m)+k reporting time, and U(m) update time
or, in the static case, P(m) preprocessing time. Let D be the depth of the tree
being stratified (either T or C(T )).

Theorem 4. A data structure using O(
√

DS(m)) space can be built to sup-
port edgeQuery(·) in O(Q(m)) time, edgeExpand(·, ·) in O(kQ(m)) time, and
edgeReport(·) in O(R(m) + k) time, where k is the number of edges reported. In
the dynamic case, insertion and deletion of an edge into G take O(

√
DU(m))

time; in the static case, the preprocessing time is O(
√

DP(m)).



We can also stratify recursively. Starting with the one-level stratification
above, stratify the

√
D stratum top nodes into D1/4 strata of D1/4 levels each.

Similarly recurse on the nodes within each stratum. We can doubly recurse
log log D levels until there remain O(1) strata containing O(1) nodes each. Each
edge is thus recorded in O(log D) S(·) and S′(·) sets.

Theorem 5. A data structure using O(S(m) log D) space can be built to support
edgeQuery(·) in O(Q(m) log D) time, edgeExpand(·, ·) in O(kQ(m) log D) time,
and edgeReport(·) in O(R(m) log D + k) time, where k is the number of edges
reported. In the dynamic case, insertion and deletion of an edge into G take
O(U(m) log D) time; in the static case, the preprocessing time is O(P(m) log D).

4.3 Higher Dimensions. The d-dimensional data structure on nodes of
T1 is a collection of sets Sd(·), such that Sd(u1) maintains the information as
detailed above on hyperedges incident on descendents of u1 ∈ V (T1). Consider
such a hyperedge (x1, . . . , xd) (x1 ∈ desc(u1)). Sd(u1) is implemented recursively,
as a collection of Sd−1(·) sets recording the projections (x2, . . . , xd) of the original
hyperedges in Sd(u1). S2(·) is the base case, equivalent to the S(·) sets above.
There is a separate recursive collection of Si−1(·) sets for each Si(·) set; no space
is allocated for empty sets.

This strategy allows for all except edgeExpand(·, 1) operations. If necessary,
we maintain a second set of Sd(·) sets, designating a different tree to be T1.

We stratify as in Section 4.2. Recall that in the one-level stratification, each
original operation engendered two new operations (on the S(·) and S′(·) sets).
Denote by Sd(m), Qd(m), Rd(m) + k, Ud(m), and Pd(m) the space and query,
reporting, update, and preprocessing time bounds, rsp., for the d-dimensional
tree-cross product operations. Let D be the depth of the tree (T or C(T )). With-
out stratification, we derive that Sd(m) = DSd−1(m), and Qd(m) = Qd−1(m).
With one-level stratification, we derive that Sd(m) =

√
DSd−1(m), andQd(m) =

2Qd−1(m). With recursive stratification, we derive that Sd(m) = log DSd−1(m),
andQd(m) = log DQd−1(m). With all methods, the derivation forRd(m) follows
that for Qd(m), and those for Ud(m) and Pd(m) follow that for Sd(m).

Table 1 details some of the resulting bounds, using compressed trees (hence
D = O(log n)) and either Overmars’ static three-sided range query structure [23]
for the static case or Willard’s PST [29] for the dynamic case.

These results strictly improve upon what we could derive using classical range
searching on the original grid. Consider the two-dimensional case, for example.
Overmars’ static structure [23] would match only our non-stratified, static space
and query time bounds, but his preprocessing time is significantly higher; to
reduce the latter would degrade the query time by a

√
log n/ log log n factor.

Applying Edelsbrunner’s technique [10] to Willard’s PST [29] would match only
our non-stratified, dynamic bound. Stratification improves all these bounds. We
also provide a dynamic solution that achieves logarithmic query and update
times in almost-linear space. No classical range searching result provides the
same bounds. Chazelle [8] provides linear space bounds, but the query and up-
date times are O(log2 n), and reporting imposes a non-constant penalty on k.



Table 1. Deterministic, worst-case bounds for d-dimensional tree cross-product oper-
ations. n = |V (G)|, m = |E(G)|. For all methods, the edgeReport(·, ·) time is k + f(n),
and the edgeExpand(·, ·) time is k · f(n), where k is the number of edges reported, and
f(n) is the corresponding edgeQuery(·, ·) time.

Method Space edgeQuery(·, ·) time

Static Preproc. time

No stratification O(m logd−1 n) O(log log n) O(m logd−1 n)

One-level strat. O(m log
d−1
2 n) O(2d−1 log log n) O(m log

d−1
2 n)

Recursive strat. O(m(log log n)d−1) O((log log n)d) O(m(log log n)d−1)
Dynamic Update Time

No stratification O(m logd−1 n) O(log n/ log log n) O(logd n/ log log n)

One-level strat. O(m log
d−1
2 n) O(2d−1 log n/ log log n) O(log

d+1
2 n/ log log n)

Recursive strat. O(m(log log n)d−1) O(log n(log log n)d−2) O(log n(log log n)d−2)

5 Applications

5.1 Hierarchical Graph Views. Given a rooted tree T and a graph G,
such that the vertices of G correspond to the leaves of T , we say that U ⊆ V (T )
partitions G if the set {leaves(v) : v ∈ U} partitions V (G). A view of G is any
U ⊆ V (T ) that partitions G. We extend the definitions from Section 2. For
any u, v ∈ V (T ) such that neither u nor v is an ancestor of the other, define
E(u, v) = {{x, y} ∈ E(G) : x ∈ leaves(u)∧ y ∈ leaves(v)}. If each edge e ∈ E(G)
has a weight, w(e) ∈ G, from an abelian group, (G,¯), then the weight of (u, v)
is w(u, v) =

⊙ {w({x, y}) : {x, y} ∈ E(u, v)}. For any view U , we define G/U to
be the induced graph (U,EU ), where EU = {(u, v) ∈ U × U : |E(u, v)| > 0}.

The hierarchical graph-view maintenance problem is to maintain G/U under
the following operations on U : expand(U, x), where x ∈ U , yields view U \ {x} ∪
children(x); contract(U, x), where children(x) ⊆ U , yields view U \ children(x)∪
{x}. The problem is motivated by graph visualization applications [7, 9].

Let n = |V (G)|, m = |E(G)|, p = min{depth(T ), log n}, and assume without
loss of generality that T contains no unary vertices. (Hence |V (T )| = O(n).)
Buchsbaum and Westbrook [7] show how, with O(mp) space and O(mp2) ex-
pected preprocessing time, to perform expand(·, ·) and contract(·, ·) operations
in optimal time: linear in the number of changes to E(G/U). There is an addi-
tional log n factor in the expand(·, ·) time for weighted graphs. To accommodate
updates to G, the space bound becomes O(mp2), the edge insertion and deletion
times are expected O(p2 log n); expand(·, ·) and contract(·, ·) remain optimal.

By applying tree cross products, we improve the space, update and prepro-
cessing times for unweighted graph-view maintenance. The cost is an increase in
expand(·, ·) time; contract(·, ·) remains optimal. All of our bounds are determin-
istic, worst-case; the prior update and preprocessing times [7] are expected.

Set T1 = T2 = T . Edge (u, v) ∈ E(G) (ordered by postorder on T ) becomes an
edge from u in T1 to v in T2. An expand(U, v) engenders an edgeExpand((u, v), v)
operation for each (u, v) ∈ E(G/U) (and symmetrically for (v, w) ∈ E(G/U)).



Induced edges between children of v are found using nearest common ancestors
[7]. To implement contract(U, v), add an edge to v from each non-child of v
adjacent to a child of v in G/U , and remove edges incident on children of v.

Define Opt(U, v) to be the number of nodes adjacent to children of v in G/U .
Denote by U the view before an expand(U, ·) or contract(U, ·) and U ′ the result.

Theorem 6. On an unweighted graph, with O(m log log n) space, we can per-
form edge insertion and deletion in O(log n) time, expand(U, v) in O(Opt(U ′, v)·
log n) time, and contract(U, v) in O(Opt(U, v)) time. In the static case, with
O(m log log n) space and preprocessing time, we can perform expand(U, v) in
O(Opt(U ′, v) · (log log n)2) time and contract(U, v) in O(Opt(U, v)) time.

Theorem 6 follows from Theorem 5, assuming recursive stratification. One-
level stratification improves the expand(U, v) times by log log n factors but de-
grades the space, update and preprocessing times by

√
log n/ log log n factors.

5.2 String Matching. Given text T = x1 · · ·xn of length n, denote by
T [i, j] the substring xi · · ·xj . The text indexing with one error problem is to
preprocess T so that, given length-m pattern P , we can compute all locations i
in T such that P matches T [i, i+m−1] with exactly one error. Below we assume
Hamming distance, i.e., the number of symbols replaced, but the method extends
to Levenshtein (edit) distance [19].

This on-line problem differs from approximate string matching [14, 26], in
which both T and P are given off-line. Exact text indexing (finding occurrences of
P with no errors), can be solved with O(n) preprocessing time and space, O(m+
k) query time, where k is the number of occurrences [21, 28], and O(log3 n + s)
time to insert or delete a length-s substring in T [26].

The work of Ferragina, Muthukrishnan, and de Berg [11] extends to solve text
indexing with one error. Given O(n1+ε) preprocessing time and space, queries
take O(m log log n + k) time. Using the same approach, Amir et al. [2] give a
solution with O(n log n) preprocessing time and space but O(m

√
log n+k) query

time. Both assume no exact matches occur. We improve these results, achieving
O(m log log n + k) query time and O(n

√
log n) space and preprocessing time.

Amir et al. [2] extend their solution to the general case with O(n log2 n) space
and preprocessing time and O(log n log log n+k) query time. We similarly extend
our solution, achieving log n factor improvements in all bounds.

Observe [2, 11] that an occurrence of P in T at location i with one error at
location i+ j implies that T [i, i+ j−1] matches P [1, j] and T [i+ j +1, i+m−1]
matches P [j +2,m]. To exploit this, Amir et al. [2] first build suffix trees ST for
T and ST R for TR, the reverse string of T , using Weiner’s method [28]. Label
each leaf in ST by the starting location of its suffix in T ; label each leaf in ST R

by n− i + 3, where i is the starting location of the corresponding suffix in TR.
Querying for P is done as follows.

For j = 1, . . . , m do
1. Find node u, the location of P [j + 1,m] in ST , if such a node exists.
2. Find node v, the location of P [1, j − 1]R in ST R , if such a node exists.
3. If u and v exist, report the intersection of the labels of leaves(u) and leaves(v).



Steps (1) and (2) can be performed in O(m) time over the progression of the
algorithm [2], by implicitly and incrementally continuing the Weiner construction
[28] on the suffix trees. By adding edges connecting pairs of identically labeled
leaves, Step (3) becomes an edgeReport(u, v) operation.

Theorem 7. Given O(n
√

log n) preprocessing time and space, we can preprocess
a string T of length n, so that, for any string P of length m given on-line, if no
exact matches of P occur in T , we can report all occurrences of P in T with one
error in O(m log log n + k) time, where k is the number of occurrences.

Each exact match would be reported |P | times. To obviate this problem, we
add a third dimension as do Amir et al. [2]. Tree T3 contains a root and s leaves,
each corresponding to one of the s ≤ n alphabet symbols. Each edge connecting
leaves in ST and ST R corresponds to some mismatch position i in T . We extend
the (hyper)edge to include leaf T [i, i] in T3. We extend the edgeReport(u) seman-
tics to allow the stipulation that any dimension j report elements that are not
descendents of uj . (This simply changes the parameters of the queries performed
on the S(·) sets.) Step (3) becomes an edgeReport(u, v, T [i, i]) operation.

Theorem 8. Given O(n log n) preprocessing time and space, we can preprocess
a string T of length n, so that, for any string P of length m given on-line, we
can report all k occurrences of P in T with one error in O(m log log n+k) time.

Grossi and Vitter [15] use a similar strategy to report contiguous ranges in
compressed suffix arrays, which use only O(n) bits to implement all suffix-array
functionality on a length-n binary string T . They use two-dimensional, grid range
searches that can be equivalently realized by node-intersection queries on suf-
fix trees for T and TR. As above, tree cross products improve their bounds
on the additional suffix-array reporting time, from O(log2 n log log n + k) to
O(log n(log log n)3 + k), where k is the output size.

5.3 Hammocks. Let G = (V, E) be a directed graph with a designated
source node, s, and sink node, t. A node u dominates a node v if every path from
s to v goes through u. A node v post-dominates a node u if every path from u to
t goes through v. The hammock between two nodes u and v is the set of nodes
dominated by u and post-dominated by v. (This modifies the definition due to
Kas’janov [18].)

Johnson, Pearson, and Pingali [17] define a canonical, nested hammock struc-
ture, which is useful in compiler control-flow analysis, and devise an O(m)-time
algorithm to discover it. (n = |V |, and m = |E|.) No previous result, however,
allows efficient, on-line queries of the form: return the hammock between two
given nodes. Such queries are useful in software system analysis, to detect col-
lections of systems with designated information choke points, e.g., to assess the
impact of retiring legacy systems [5].

We can solve such queries as follows. Let T1 be the dominator tree [1, 6] of G,
and let T2 be the dominator tree of the reverse graph of G. The hammock between
two nodes u and v in G is the intersection of the set of descendents of u in T1



with the set of descendents of v in T2. By adding edges connecting corresponding
nodes in T1 and T2, this intersection is computed by an edgeReport(u, v) query.

Theorem 9. With O(n
√

log n) (rsp. O(n log log n)) space and preprocessing
time, we can compute the hammock between two given nodes in O(log log n + k)
(rsp., O((log log n)2 + k)) time, where k is the size of the hammock.

6 Conclusion

Many applications impose balance or low-depth constraints on T , which obviate
the sophisticated space-reduction techniques and allow the S(·) sets to be imple-
mented by simple binary search trees, making our tree cross-product framework
very practical. Low-degree constraints on T might lead to other simplifications.

How to implement edgeWeight(·, ·) operations efficiently remains open. It
also remains open to unify our graph-view bounds with those of Buchsbaum
and Westbrook [7], i.e., to eliminate the penalty that we incur on expand times.

Finally, allowing updates to T remains open.
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