
Restricted Strip Covering and the Sensor Cover Problem

Adam L. Buchsbaum∗ Alon Efrat † Shaili Jain‡ Suresh Venkatasubramanian§ Ke Yi ¶

Abstract
Suppose we are given a set of objects that cover a region and a
duration associated with each object. Viewing the objects as jobs,
can we schedule their beginning times to maximize the length of
time that the original region remains covered? We call this problem
theSENSORCOVER PROBLEM. It arises in the context of covering
a region with sensors. For example, suppose you wish to monitor
activity along a fence (interval) by sensors placed at various fixed
locations. Each sensor has a range (also an interval) and limited
battery life. The problem is then to schedule when to turn on the
sensors so that the fence is fully monitored for as long as possible.

This one-dimensional problem involves intervals on the real
line. Associating a duration to each yields a set of rectangles
in space and time, each specified by a pair of fixed horizontal
endpoints and a height. The objective is to assign a bottom
position to each rectangle (by moving them up or down) so as
to maximize the height at which the spanning interval is fully
covered. We call this one-dimensional problemRESTRICTED
STRIP COVERING. If we replace the covering constraint by a
packing constraint (rectangles may not overlap, and the goal is to
minimize the highest point covered), then the problem becomes
identical to DYNAMIC STORAGE ALLOCATION, a well-studied
scheduling problem, which is in turn a restricted case of the well
known problemSTRIP PACKING.

We present a collection of algorithms forRESTRICTEDSTRIP
COVERING. We show that the problem is NP-hard and present an
O(log log log n)-approximation algorithm. We also present better
approximation or exact algorithms for some special cases, includ-
ing when all intervals have equal width. For the generalSEN-
SOR COVER PROBLEM, we distinguish between cases in which
elements have uniform or variable durations. The results de-
pend on the structure of the region to be covered: We give a
polynomial-time, exact algorithm for the uniform-duration case
of RESTRICTED STRIP COVERING but prove that the uniform-
duration case for higher-dimensional regions is NP-hard. We give
some more specific results for two-dimensional regions. Finally, we
consider regions that are arbitrary sets, and we present anO(log n)-
approximation algorithm for the most general case.

1 Introduction

Sensors are small, low-cost devices that can be placed in a
region to monitor local conditions. Distributed sensor net-
works have become increasingly more popular as advances
in MEMS and fabrication allow for such systems that can
perform sensing and communication. How sensors commu-
nicate is a well-studied problem. Our main interest is: Once

∗AT&T Labs, alb@research.att.com.
†Comp. Sci. Dept., University of Arizona, alon@cs.arizona.edu.
‡Eng. and Appl. Sci. Div., Harvard University, shailij@eecs.harvard.edu.

Part of the work was done while visiting AT&T Shannon Labs. Supported
by the AT&T Labs Fellowship Program.
§AT&T Labs, suresh@research.att.com.
¶AT&T Labs, yike@research.att.com. Part of the work was done while

at Duke University.

a sensor network has been established, how can we maxi-
mize the lifetime of the network? It is clear that the limited
battery capacities of sensors is a key constraint in maximiz-
ing the lifetime of a network. Additionally, research shows
that partitioning the sensors into covers and iterating through
them in a round-robin fashion increases the lifetime of the
network [1, 4, 9, 10].

Definitions. Let S be a set ofn sensors. Each sensors ∈ S
can be viewed as a point in some space with an associated
regionR(s) of coverage. For every pointx ∈ R(s), s is live
at x. Let U be the region to be covered byS. U is covered
by someR ⊆ S if U ⊆ ⋃

s∈RR(s). We callR a feasible
cover. Every sensors ∈ S can beactivefor a finiteduration
d(s). Let dmin = mins∈S d(s), anddmax = maxs∈S d(s).

PROBLEM 1.1. (SENSORCOVER) Compute ascheduleS
of maximumdurationT , in which each sensors ∈ S is
assigned astart timet(s) ≥ 0, such that anyx ∈ U is
covered by some active sensor at all times0 ≤ t < T . That
is, for all x ∈ U and0 ≤ t < T , there is somes ∈ S with
x ∈ R(s) andt(s) ≤ t < t(s) + d(s).

A sensor isredundant in a scheduleS if it can be
removed without decreasing the duration ofS. A schedule
with no redundant sensors isminimal. It suffices to consider
only minimal schedules, which may not utilize all sensors.
As a convention, we sett(s) = ∞ if s is unused.

Prior work on theSENSORCOVER problem has focused
solely on the case where the regionsR(·) are arbitrary
subsets ofU and the durations are all identical. This
assumption yields apacking constraint, and the problem
reduces to partitioning the set of sensors into a maximum
number of valid covers. This problem is known asSET

COVER PACKING and is ln n-hard to approximate, with a
matching upper bound [6].

In practice, these assumptions appear overly constrain-
ing. Sensors will have arbitrary durations and typically de-
fine geometric regions of coverage: intervals, rectangles,
disks, etc. In this paper, we consider such variations. In the
RESTRICTED STRIP COVER problem, theR(·)’s are one-
dimensional intervals, and the problem is equivalent to slid-
ing axis-parallel rectangles vertically to cover a rectangular
region of maximum height. In theCUBE COVER problem,
the R(·)’s are axis-parallel rectangles, and the problem is
akin to sliding cubes vertically in thez-dimension. We also

Table 1: Summary of results.
Shape of sensor Uniform duration Variable duration

Intervals exact in P
NP-hard,O(log log log n)-approx.,

(2 + ε)-approx. for equal-width
Convex with NP-hard,O(log(ndmax/L))-approx.;

NP-hard,O(log n)-approx.
small cuttings O(log(Lmax/L))-approx. when congruent & fat

Arbitrary sets
log n-hard to approx., log n-hard to approx.,
O(log n)-approx. [6] O(log n)-approx.

considerSENSORCOVER, when theR(·)’s are arbitrary sub-
sets of a setU of sizeO(n), with varying durations (in con-
trast toSET COVER PACKING).

In general, a schedule may activate and deactivate a
sensor more than once. We call this apreemptive schedule. A
non-preemptive scheduleis a schedule in which each sensor
is activated at most once. In this paper we only consider the
non-preemptive problem. We have some preliminary results
for the preemptive case, but more research is needed to gain
a better understanding of the differences.

Our results. We show that most variants ofSENSORCOVER

are NP-hard, and we study approximation algorithms. For
any pointx ∈ U , let L(x) =

∑
s∈S,s live atx d(s) be the

load at x . Define the overallload L = minx L(x); let
Lmax = maxx L(x). We write LX (rsp., LX(x)) for the
load of any subsetX of sensors (rsp., atx). OPT denotes
the duration of an optimal schedule; a trivial upper bound is
OPT≤ L. All our approximation ratios are with respect to
L. ThatOPT≤ L allows the assumption thatdmax ≤ L.

Table 1 summarizes our results. Notably, forRE-
STRICTED STRIP COVER, we give anO(log log log n)-
approximation algorithm for the general case andO(1)-
approximations for some special cases, including a(2 + ε)-
approximation when all intervals have equal width. For
CUBE COVER, we give approximations that extend to any
convex shape with small cuttings: rectangles, disks, ellipses,
etc. We discussRESTRICTED STRIP COVER in Section 2,
CUBE COVER in Section 3, and the generalSENSORCOVER

problem in Section 4.

Related Work. SET COVER PACKING was studied by
Feige et al. [6]. They considered theDOMATIC NUMBER

problem, where the goal is to maximize the number of
disjoint dominating sets on the set of vertices of a graph. A
dominating setin a graphG = (V,E) is a setV ′ ⊂ V of
vertices such that everyv ∈ V is either contained inV ′ or
has a neighbor inV ′. Feige et al. show that theDOMATIC

NUMBER problem is hard to approximate within a factor of
(1 − ε) ln |V | for ε > 0, by first showing the hardness of
approximation of theSET COVER PACKING problem. Note
that theSET COVER PACKING problem is a combinatorial
version of our problem, with each subset being a region
of unit duration. Feige et al. also give a randomizedln n-
approximation algorithm, which they derandomize. Their

work showed the first maximization problem proved to be
approximable within polylogarithmic factors but no better.

The practical motivations for studying this problem have
inspired the development of numerous heuristics. Slijepcevic
and Potkonjak [10] introduce theSET K-COVER problem,
where they are given a set of subsets of a base set and an
integer k and ask if it is possible to construct at leastk
disjoint set covers. They prove thatSET K-COVER is NP-
complete, which is implied by Feige et al.’s result [6], and
present a heuristic for constructing disjoint set covers.

Perillo and Heinzelman [9] study a variation of this
problem, where they want to maximize the lifetime of a
multi-mode sensor network. They compute all possible fea-
sible covers and then translate their problem instance into
a graph. Each sensor and feasible cover becomes a node.
Sensors are connected to a feasible cover if they are con-
tained in that feasible cover. They use linear programming
to model additional energy constraints and solve a maxi-
mum flow problem on this graph. Their solution, while opti-
mal, can be exponential in the size of the problem instance.
Dasika et al. [4] also compute all possible feasible covers
and develop heuristics for switching between these covers in
order to maximize the lifetime of their sensor network.

Abrams, Goel, and Plotkin [1] study a variation of the
problem where they are given a collection of subsets of a
base set and a positive integerk ≥ 2. Their goal is to par-
tition the subsets intok covers, where the area of coverage,
defined as the cardinality of a set, is maximized across all
k covers. They give three approximation algorithms for this
problem: a randomized algorithm, a distributed greedy algo-
rithm, and a centralized greedy algorithm. Their random-
ized algorithm partitions sensors within1 − 1

e of the op-
timal solution. Their distributed greedy algorithm gives a
1
2 -approximation ratio. Their centralized greedy algorithm
achieves an approximation factor of1 − 1

e . They also prove
a 15

16 -hardness result for their problem.
We are unaware of previous work on theRESTRICTED

STRIP COVER problem. Some of the closely related prob-
lems are well studied, however. If we replace the covering
constraint by a packing constraint (rectangles may not over-
lap, and the goal is to minimize the height of the highest
point covered), then the problem becomesDYNAMIC STOR-
AGE ALLOCATION [7, Problem SR2], for which there is a

(2 + ε)-approximation [3]. If we further allow rectangles to
move both vertically and horizontally, then the problem be-
comesSTRIP PACKING, which has a(1 + ε)-approximation
up to an additive term [8].

2 Restricted Strip Cover

Consider an instanceS of RESTRICTED STRIP COVER

(RSC). For ease of presentation, we defineR(s) as a semi-
closed interval[`(s), r(s)) for eachs ∈ S; thewidth of s is
r(s)− `(s). We assume w.l.o.g. that all interval coordinates
are integers in[0, 2n − 1] and thatU = [0, 2n − 1),
because there are at most2n distinct interval endpoints.
It is convenient to view scheduled sensors as semi-closed
rectangles in the plane, with intervals along thex-axis and
durations along they-axis. Thus a valid scheduleS of
duration T is one in which any point(x, y) in the sub-
planeU × [0, T) is covered by some sensors; i.e., `(s) ≤
x < r(s) and t(s) ≤ y < t(s) + d(s). The problem
is equivalent to sliding axis-parallel rectangles vertically to
cover a rectangular region of maximum height. Therefore,
in this section we use the terms “sensor” and “rectangle”
interchangeably. We say two or more rectanglesoverlap if
they cover some common point. When discussing multiple
schedules, we writetS(s) to denote the start time ofs in
some scheduleS.

We assume all durations are positive integers. LetS be
some schedule ofS. Definelevelj of S to be the horizontal
slice of sensors that cover points in they-range[j − 1, j). A
gap is a pointp such that no sensor coversp. For i ∈ U ,
defineM(S, i) to be the greatesty-coordinatej such that no
gap exists belowj at i; i.e., M(S, i) = max{j : ∀j′ <
j, ∃s ∈ S, s covers(i, j′)}. Then theduration of S is
M(S) = mini M(S, i).

Our main results are anO(log log log n)-approximation
for arbitrary intervals and a(2 + ε)-approximation for inter-
vals whosex-projections are non-nested, which includes the
case of uniform width. We use three main components:

1. a simple, exact algorithm if all sensors have the same
duration (Section 2.1);

2. an exact, dynamic programming algorithm, which runs
in poly(n) time if L = O(log n/ log log n) and yields
a PTAS whenL = O(dmin log n/ log log n) (Sec-
tion 2.2);

3. (1 + ε)-approximations whenL = Ω(dmax log n ·
min{1/ε, log(dmax/dmin)}/ε4) (Section 2.3).

2.1 Uniform-Duration Sensors If all sensors have the
same duration, a simple greedy algorithm gives an exact
solution of durationL. DefineSi = {s ∈ S : s is live ati}.
Assume by scaling that all sensors have unit duration. We
proceed left-to-right, starting ati = 0 and constructing a

scheduleS while maintaining the following invariants after
scheduling sensors inSi: (i) no sensors overlap at anyx-
coordinate≥ i, and (ii)M(S, i) = L.

When i = 0, select anyL sensors that are live at0,
and schedule them without overlap, establishing the initial
invariants. Assuming the invariants are true ati, schedule
Si+1 as follows. If there are no gaps ati+1, we are done, as
the invariants extend toi + 1. Otherwise, assume there are
k > 0 unit-duration gaps ati + 1. At leastk sensors inSi+1

must be unscheduled, which can be used to fill the gaps.

2.2 A Dynamic Programming Solution for SmallL We
give a dynamic program to determine if there is a schedule
S such thatM(S) = T for a fixedT . The dynamic program
is similar to that of Buchsbaum et al. [3], but we need a new
analysis, as their analysis would yield annO(n) time bound
here. Below we ignore portions of sensors that extend above
levelT in any schedule.

DefineS≤i =
⋃

0≤k≤i Sk. Consider some schedules
Si−1 of Si−1 and Si of Si such thatM(Si−1, i − 1) =
M(Si, i) = T . We say thatSi−1 andSi arecompatibleif
(i) for all s ∈ Si−1 ∩ Si, tSi−1(s) = tSi(s); and (ii) for
all j ∈ [0, T), (i, j) is covered bySi−1 or Si. The first
condition stipulates that any sensor in both schedules must
have the same start time in each; the second requires a sensor
in Si to be scheduled to cover each level at which coverage
stops ati − 1 in Si−1. For eachi, we populate an array
Ci indexed by possible schedules ofSi. For anySi, define
Ci[Si] = 1 if there is a scheduleS of S≤i that respectsSi and
hasM(S, x) = T for 0 ≤ x ≤ i; andCi[Si] = 0 otherwise.
ThenCi[Si] = 1 if and only ifM(Si, i) = T and there exists
some scheduleSi−1 of Si−1 such thatCi−1[Si−1] = 1 and
Si−1 is compatible withSi. For i = 0, C0[S0] = 1 for
precisely those schedulesS0 of S0 that haveM(S0, 0) =
T . The dynamic program then populates the arraysCi in
increasing order ofi, by checking all schedules ofSi for
eachi. Ultimately we check if there is some scheduleS2n−1

of S2n−1 such thatC2n−1[S2n−1] = 1.

First Analysis. For a scheduleSi of Si, denote by∂(Si)
the vertical boundaries of the union of the rectangles ofSi.
If Si is part of a minimal scheduleS of durationT , then
any rectangle ofSi must cover some point on∂(Si) that
is covered by no other rectangles inSi. Thus |Si| ≤ 2T ,
because∂(Si) has total length2T .

Because there are at most2T sensors per schedule,
there are at most

(
n
2T

)
T 2T possible schedules ofSi. Each

schedule ofSi must be checked for compatibility against
each schedule ofSi−1, and checking compatibility of a
pair of schedules takesO(T) time. Hence the time to

run the whole dynamic program is2n
((

n
2T

)
T 2T

)2
O(T) =

(nT)O(T) = (nL)O(L). To determineOPT, we run the
dynamic program for each of theL possible values ofT ,
which does not affect the overall asymptotics.

Partitioning the Dynamic Program. It suffices to run the
dynamic program only onx-coordinates with relatively few
live sensors. LetX = {i : |Si| < 5T}. We claim thatS
has a schedule of durationT iff S has a scheduleS such that
M(S, i) ≥ T for any i ∈ X. We prove the “if” part; the
“only if” part is clear.

Assume that there is a minimal scheduleS of durationT
that only coversX. We show how to schedule the sensors not
used inS to cover allx-coordinates. Consider any maximal
interval X̄ of x-coordinates not inX. At most4T sensors
from S are live at anyi ∈ X̄, because any such sensor
is also live at eithermin(X̄) − 1 or max(X̄) + 1, and at
most2T are live at either one. By construction, there are
at least5T sensors live at anyi ∈ X̄, so there are at least
5T − 4T = T sensors live ati that are not used byS and
hence are available, which suffice to cover all the levels ati.
If such a sensors should also be live at anotheri′ ∈ X̄ (or
anotheri′ in anotherX̄ ′), it reduces by one both the number
of potential uncovered levels and the number of available
sensors live ati′, so enough sensors will remain ati′.

Therefore we need only run the dynamic program on the
x-coordinates inX. This takes only2n·TO(T) time, because
there are fewer than5T sensors live at anyi ∈ X.

THEOREM 2.1. RSCcan be solved in time2n · LO(L).

COROLLARY 2.1. RSC can be solved inpoly(n) time if
L < c · log n/ log log n for any constantc.

Using a standard trick, a PTAS follows directly by
appropriately truncating durations.

COROLLARY 2.2. There is a PTAS forRSC if L < c ·
dmin log n/ log log n for any constantc.

2.3 Algorithms for Small Durations We now have algo-
rithms for the cases of uniform duration and large durations
(relative to load). Here we consider the case when all du-
rations are small relative to load. To do so, we develop a
groupingtechnique, which builds on theboxingtechnique of
Buchsbaum et al. [3]. Although we follow the rough out-
line of their technique, the covering (as opposed to packing)
nature of our problem necessitates new ideas.

The basic idea of grouping is to group shorter sensors
into longer, virtual sensors until all the sensors have equal
duration, at which point the greedy algorithm is invoked.
Ensuring that the load does not decrease too much during
the process is the key to our algorithms.

Grouping Sensors. A grouping is a partition of a setY
of sensors into a setG of groups, each of which is then
replaced by a rectangle that can be covered by the sensors
in the group. Thedurationof a group is that of the rectangle
that replaces it. These rectangles form a modified instance.
LG (rsp.,LG(i)) is defined to be theload of the groups(rsp.,

at i). Note thatLG(i) ≤ LY (i), since portions of the sensors
in a group that are overlapped or outside the rectangle are
not counted inLG(i). We give polynomial-time procedures
to group a setY of sensors of unit duration intoG such that
LG(i) is not much smaller thanLY (i) for anyi.

First, we give a grouping of a set of sensors that are all
live at a fixedx-coordinate. The following adapts Lemma
2.1 of Buchsbaum et al. [3], and the proof is similar, although
simpler; details are in Appendix A.1.

LEMMA 2.1. Given a setY of unit-duration sensors, all live
at some fixedx-coordinatex0, an integergroup-duration
parameterD, and a sufficiently small positiveε, there is a
set G of groups, each of durationD, such that for anyi,
LG(i) > LY (i)/(1 + ε)− 4Dd1/εe.

We now partition the input so that we can apply Lemma
2.1 individually to the parts.

DEFINITION 2.1. Aγ-groupingis a partition of sensors into
a set of groups such that: (1) In each group, there is an
anchor(x-coordinate)i at which all sensors in the group are
live; and (2) for anyx-coordinatei, the set of sensors live at
i are drawn from no more thanγ groups.

Notes. Sensors in a group may share many anchors in
common; the anchor of the group is one distinguished from
this set. Not all sensors live at an anchor will be in its group.
Also, the existence of aγ-grouping is a purely combinatorial
property of a family of ranges, like the canonical subsets
used in range searching [2].

LEMMA 2.2. Given a setZ of unit-duration sensors that
admits aγ-grouping, an integergroup-duration parameter
D, and a sufficiently small positiveε, there is a setG of
groups, each of durationD, such that at anyx-coordinate
i, LG(i) > LZ(i)/(1 + ε)−O(γD/ε).

Proof: Let G be a γ-grouping of Z. Each group in
G possesses an anchor and thus satisfies the premises of
Lemma 2.1. Apply Lemma 2.1 to each group ofG. Let
V be the set of anchors, and letZv denote the set of all the
sensors in the group that hasv as an anchor.

Consider anyx-coordinatei. By Lemma 2.1 and the fact
that theZv form a partition,LG(i) >

∑
v∈V (LZv (i)/(1 +

ε) − 4Dd1/εe). By theγ-grouping property, there are only
γ relevant terms in the summation, soLG(i) > LZ(i)/(1 +
ε)− 4γDd1/εe. 2

LEMMA 2.3. Any set of intervals has anO(log n)-grouping.

Proof: Build an interval treeT on the intervals. For
each nodev of T , form groupZv containing the intervals
associated withv. Clearly, thex-coordinate of the dividing
line corresponding tov is a valid anchor of the groupZv.

B
A

Figure 1: A bad example for grouping.

T has depthO(log n). For nodesu,w at the same level
of T , setsZu andZv are disjoint. Thus, the intervals live at
anyx-coordinate are distributed amongO(log n) groups.2

Remark. This bound is tight in general. Consider any
grouping of the example in Figure 1. LetU be [0, 1]. We
show there must be anx-coordinatei such that the sensors
live at i belong toΩ(log n) groups. Initially, i might lie
anywhere inU . SensorA is assigned to some group; assume
w.l.o.g. that the anchor of this group lies in the left half ofA,
i.e., [0, 0.5). Restrict the range of candidatex-coordinates
for i to [0.5, 1]. Note that all groups involving intervals in
this range (likeB) must be different fromA’s group. Repeat
this process withB. As the range of candidatex-coordinates
for i thereby decreases, we maintain an increasing set of
intervals that all must belong to different groups. The
process terminates afterΩ(log n) steps.

More structure on the intervals allows for better group-
ings. Consider families ofnon-nestedintervals, in which no
interval properly contains another. Uniform-width intervals
are a special case.

LEMMA 2.4. Collections of non-nested intervals admit2-
groupings.

Proof: In non-decreasing order by left endpoint, greedily add
intervals into the first group as long as they all share somex-
coordinate. When no further progress can be made, create a
new group and continue.

Consider three groupsA,B, C created in consecutive
order. LetsA, sB , andsC be the first intervals picked in
each group. By assumption, all intervals inA are live at the
right endpoint ofsA. If sA andsB are live at some common
x-coordinate, thensB is also live at the right endpoint ofsA,
which is not possible, sincesB started a new group.

Thus, sA, sB and sC are mutually disjoint. Since no
interval ofC has its left endpoint to the left of that ofsC , no
interval ofA can be live at anx-coordinate of an interval of
C, or sB would be nested. Hence, all intervals active at any
x-coordinate between the left endpoints ofsB andsC must
be fromA or B. 2

The Algorithm. Henceforth, we assume that the input
admits aγ-grouping. By Lemma 2.3,γ = O(log n). Letε be
a sufficiently small error parameter, and letD = dmaxd1/εe.
THEOREM 2.2. For any sufficiently small positiveε, Al-
gorithm 1 runs inpoly(n, 1/ε) time and gives a schedule

Algorithm 1 Approximation algorithm via grouping

(1) Truncate each sensor of durationd to d(1+ε)ke, where
(1 + ε)k ≤ d < (1 + ε)k+1 for some integerk. Let X be
the set of truncated sensors.
(2) For eachd = d(1 + ε)ke, k = blog1+ε dminc,. . . ,
dlog1+ε dmax − 1e, do the following. LetXd denote the
set of truncated sensors of durationd. Scale each sensor in
Xd down by a factor ofd, apply Lemma 2.2 with group-
duration parameterdD/de and the givenε, and then scale
the obtained groups back up byd.
(3) Let G be the set of rectangles obtained from Step (2).
Truncate them so that they all have duration exactlyD.
Call the resulting set of rectanglesG′.
(4) Apply the greedy algorithm toG′.

of the RSC problem with duration at leastL/(1 + ε) −
O

(
γdmax log(dmax/dmin)/ε3

)
.

Proof: We will show that truncating and grouping do not
decrease the load at anyi excessively.

By Lemma 2.2, Step 2 produces a groupingGd of Xd of
durationdD/ded such that at anyi, LGd

(i) > LXd
(i)/(1 +

ε)−O(γD/ε). Summing over alld, we have

LG(i) >
1

1 + ε
LX(i)−O

(
γD log(dmax/dmin)

ε log(1 + ε)

)

=
1

1 + ε
LX(i)−O

(
γdmax log(dmax/dmin)

ε3

)
.

Truncating the sensors in Step (1) decreases their dura-
tions by a factor of at most1 + ε, so LX(i) ≥ 1

1+εL(i).
Truncating the groups in Step (3) also decreases their du-
rations by a factor of at mostdD/ded

D ≤ D+d
D ≤ 1 + ε.

Since 1
(1+ε)3 ≥ 1

1+7ε , we haveLG′(i) > L(i)/(1 +
7ε) − O

(
γdmax log(dmax/dmin)/ε3

)
. Finally, applying the

greedy algorithm in Step (4) yields a schedule of duration
mini LG′(i) > L/(1+7ε)−O(γdmax log(dmax/dmin)/ε3).
Replacingε with ε/7 gives the desired result. 2

By bootstrapping Steps (1)–(3) of Algorithm 1, we can
replace theO(log(dmax/dmin)) factor withO(1/ε), yielding
the following result, the proof of which is in Appendix A.2.

THEOREM 2.3. For any sufficiently small positiveε, there
is an algorithm that runs inpoly(n, 1/ε) time and gives a
schedule to theRSCproblem with duration at leastL/(1 +
ε)−O

(
γdmax/ε4

)
.

COROLLARY 2.3. There is a constantc, such that for any
small enough positive realε, the algorithm gives a schedule
of duration at leastL/(1 + ε) for anyL ≥ γcdmax/ε5.

2.4 Putting the Pieces TogetherTheorem 2.3 yields a
good approximation only whendmax is small. On the other

hand, Corollary 2.2 yields a good approximation whendmin

is large. We need the following technical lemma.

LEMMA 2.5. For any partition{R1, . . . ,Rk} of S and any
x-coordinatei, someRj has load at leastL/k at i; define
m(i) to be any suchj.

Proof: By contradiction, if there were somei such that
LRj

(i) < L/k for 1 ≤ j ≤ k, then LS(i) < L. Set
m(i) = argmaxj{LRj (i)}. 2

Consider the case whenγ = O(1). Fix a parameter
β, and partitionS into two subsets:R0 consisting of all
sensors with duration at leastβL (the large sensors), andR1

containing the remaining (small) sensors. Invoking Lemma
2.5, for eachj, we useRj to cover all thex-coordinates
i wherem(i) = j. Then by settingβ = ε′5/(γc): for
R0, Corollary 2.2 yields a solution of duration at least
L/(2(1 + ε′)); and forR1, Corollary 2.3 yields a solution of
duration at leastL/(2(1+ε′)). Combining the two solutions,
we obtain a solution of durationL/(2+2ε′). Settingε = ε′/2
gives us our first result:

THEOREM 2.4. There exists a(2 + ε)-approximation for
RSCfor inputs that admitO(1)-groupings.

COROLLARY 2.4. If all sensors have equal width, we can
obtain a(2 + ε)-approximation forRSC.

Proof: This follows from the above and Lemma 2.4. 2

If γ is an increasing function ofn, we must introduce
a middle layer in the decomposition of sensors. Place all
sensors of duration at leasth = L log log n/ log n into set
R0. Fix a parameter̀, and for1 ≤ i ≤ `, place all sensors
of duration betweenh/2i andh/2i−1 into setRi, truncating
all their durations toh/2i; this at worst doubles the overall
approximation ratio. Place all sensors of duration at most
h/2` in R`+1.

We callR0 the large subset; Ri, 1 ≤ i ≤ `, themiddle
subsets; andR`+1 the small subset. Invoking Lemma 2.5,
for eachj, we useRj to cover all thex-coordinatesi where
m(i) = j. For the large subset, we use Corollary 2.2 to find a
schedule of duration at leastL/((1+ε)(`+2)). For a middle
subsetRj , j ≥ 1, because all its sensors have the same
duration, we can use the greedy algorithm to find a schedule
of duration at leastL/(`+2). For the small subsetR`+1, we
use Theorem 2.3 withε = 1. Since the sensors inR`+1

have maximum durationh/2` = L log log n/(2` log n),
Theorem 2.3 yields a schedule of duration at least

L

2(` + 2)
−O

(
γ

L log log n

2` log n

)
.

If γ = O(log n/ log log n), then setting̀ = O(1) suffices
to make the term L

2(`+2) dominate, yielding a constant-
factor approximation. For arbitrary intervals, we know from

0

1

2

3

4

5

0 1 2 3 4 5

G

A
C

B

D

F

E

H

Figure 2: [3] A set of sensors (in the form(`(·), r(·), d(·)))
A = (0, 1, 3), B = (0, 3, 1), C = (1, 2, 2), D = (1, 4, 1),
E = (2, 3, 1), F = (2, 5, 1), G = (3, 4, 2), and H =
(4, 5, 3). The shaded region is a gap. In this example,L = 4
but OPT = 3, which can be realized by slidingG down so
thatt(G) = 1.

Lemma 2.3 thatγ = O(log n), requiring` ≥ 3 log log log n,
thereby yielding anO(log log log n)-approximation.

THEOREM 2.5. There exists a polynomial-time constant-
factor approximation for theRSC-problem on collections
of intervals that admitO(log n/ log log n)-groupings. For
general collections of intervals, there exists a polynomial-
timeO(log log log n)-approximation algorithm.

2.5 HardnessTo prove thatRSCwith variable durations
is NP-hard, we exploit an identity toDYNAMIC STORAGE

ALLOCATION in a special case. An instance ofDSA is
like one of RSC, except that the instance load is defined
as the maximum load at anyx-coordinate, and the goal is
to schedule the sensors (jobs, in DSA parlance) without
overlap to minimize the makespan. If the load is equal for
all x-coordinates, thenOPT= L for either problem implies
a schedule that is a solid rectangle of heightOPT= L.

Stockmeyer proves that determining if there exists a
solution toDSA of a given makespan is NP-complete [7,
Problem SR2]. In fact, he proves that given aDSA instance
with uniform load, determining ifOPT= L is NP-complete,
even if durations are restricted to the set{1, 2}, and by the
above identity, the same is true forRSC.

To establish a gap betweenOPT and L, consider the
example in Figure 2, in whichL = 4 but OPT= 3. Scaling
shows that no approximation algorithm can guarantee a ratio
of better than4/3 with respect toL.

3 Cube Cover

3.1 Hardness ResultsWhen theR(·)’s are axis-aligned
rectangles andU is a two-dimensional region, the problem
is NP-hard even when the sensors have uniform duration,
in contrast to the uniform-duration case forRSC. We use a
reduction from an instance ofNAE-3SAT with n variables
andm clauses to an instance ofCUBE COVER.

An instanceI of NAE-3SAT is a setU of variables and
a collectionC = {C1, C2, ..., Cm} of clauses overU , such
that|Ci| = 3 for eachi. The problem is to determine if there
a truth assignment forU such that each clause inC has at
least one true literal and at least one false literal [7]. A key
property is that ifX is a satisfying assignment for an instance
I of NAE-3SAT, X̄ is also a satisfying assignment ofI.

Given I, we construct an associated graphG(I), with
vertices for each variable and each clause. We draw an edge
between a clause vertex and a variable vertex if the variable
appears in the clause. The graph is drawn on a planar
grid within a bounding boxU . From G(I), we construct
an instanceS(I) of CUBE COVER that has a schedule of
duration 2 ifI is satisfiable but only 1 ifI is unsatisfiable.
Details will appear in the full paper.

The construction eliminates the possibility of a PTAS as
well. Assume we have a PTASP for CUBE COVER. On
input (S(I), ε), whereε > 0 and S(I) is an instance of
CUBE COVER induced by the above construction,P would
output a solution with durationT , whereT ≥ (1−ε) ·OPT .
Settingε = 0.25, T ≥ 1.5 whenOPT = 2, and0.75 ≤ T ≤
1 whenOPT = 1. Thus we can useP to solveNAE-3SAT.

THEOREM 3.1. CUBE COVER is NP-hard and does not
admit a PTAS, even with uniform duration.

3.2 Rectangles With Uniform Duration We consider ap-
proximation algorithms if all sensors have unit duration and
scale to get the uniform-duration results in Table 1. First we
prove a technical lemma, which actually holds for arbitrary
sets.

LEMMA 3.1. Let U be anm-element set. Fors ∈ S, R(s)
is an arbitrary subset ofU with unit duration. There exists
some constantc large enough, such that ifL > c ln m,
then in polynomial time we can find a subsetR ⊆ S and
a schedule ofR with duration at leastL/ ln m so that the
remaining loadLS\R ≥ L/2.

Proof: We take covers fromS one by one. LetLi be the
load of the remaining sensors after taking theith cover. For
the (i + 1)th coverX , we take each remaining sensor into
X with probability p = c ln m/Li. Then we check if (1)
X is a valid cover, and (2)Li+1 > Li − 1

2 ln m. For any
x ∈ U , the probability thatx is not covered is at most
(1 − p)Li < m−c, so (1) occurs with probability at least
1−m1−c (probability of union of events). For anyx ∈ U , the
probability thatLi(x) ≤ Li− 1

2 ln m is at mostm−(2c−1)2/8c

(Chernoff bound), so (2) occurs with probability at least
1−m1−(2c−1)2/8c. Thus we can choosec large enough that
both (1) and (2) occur with high probability (e.g.,> 1/2).
We repeatedly takeX until this happens and then proceed
to the next cover. We repeat this procedure untilLi+1 drops
belowL/2, and the lemma follows. 2

The basic idea of our algorithms is the following. Take
a partition ofU with a small number of cells, and then crop
R(·) so that each sensor fully covers a number of cells but
is completely disjoint from the rest. We ensure that the load
does not decrease by more than a constant factor and then
apply Lemma 3.1.

THEOREM 3.2. If each sensors ∈ S has unit duration,
then there is a polynomial-timeO(log(n/L))-approximation
algorithm forCUBE COVER.

Proof: We assumeL > c ln n for some large constantc;
otherwise we just take one cover, and the theorem follows. It
is well known that sets of rectangles in the plane admit(1/r)-
cuttings: there exists a subsetR ⊂ S of r log r rectangles
such that in the partitionAR determined by the rectangles
of R, each face is intersected by the boundaries of at most
cn/r rectangles ofS [5]. We chooser = d2cn/Le, so
cn/r ≤ L/2.

Let f be a face ofAR, and letSf ⊆ S denote the
subset of rectangles that fully containf . Since the load
at every point inf is at leastL and onlyL/2 rectangles
partially coverf , we derive|Sf | ≥ L/2. Now replace each
rectangleR(s) by a cropped region that consists of all faces
ofAR thats fully covers. This yields an instance ofSENSOR

COVER, with a universe of sizer2 log2 r and loadL′ ≥ L/2.
Applying Lemma 3.1 yields the desired result. 2

When all theR(·)’s have the same size, a more careful
cropping scheme yields an improved bound.

THEOREM 3.3. If each sensors ∈ S has unit duration
and eachR(s) is a unit square, then there is a polynomial-
time O(log(Lmax/L))-approximation algorithm forCUBE

COVER.

Proof: We assumeL > c ln Lmax for some large constant
c; otherwise we just take one cover, and the theorem follows.
We draw a unit-coordinate gridΓ insideU . There are only
O(n/L) cells in Γ. For a cell γ ∈ Γ, let S(γ) ⊆ S
denote the set of squares ofS that intersectγ. Let nmax =
maxγ |S(γ)|. Packing arguments implynmax ≤ 4Lmax.

Two cells inΓ are independentif they are at least two
grid cells apart from each other in both dimensions. It
is easy to see that we can partitionΓ into 9 independent
setsΓ1, . . . , Γ9, where all cells in any one set are mutu-
ally independent. In the following, we will show how to
makeΩ(L/ ln(nmax/L)) covers forΓ1, such that the re-
maining load is at leastL/8. Then we repeat the pro-
cess forΓ2, . . . , Γ9, and ultimately we derive a schedule
that covers all cells with durationΩ(L/ ln(nmax/L)) =
Ω(L/ ln(Lmax/L)).

By the definition of independence, we can isolate the
cells in Γ1 and need only show that for anyγ ∈ Γ1,
we can makeΩ(L/ ln(nmax/L)) covers fromS(γ) without

decreasing the load of any of its neighboring 8 cells by
more than a factor of 8. The load ofS(γ) inside γ is
at leastL, so following the approach used in the proof of
Theorem 3.2, we build a partitionA in γ and its neighboring
cells such that each face ofA intersects the boundaries of at
mostL/2 squares fromS(γ). A has sizer2 log2 r, where
r = d2cnmax/Le. We further partition the faces ofA that
intersect the boundary ofγ, such that each face ofA is either
inside γ or outside. This at most doubles the size ofA.
Let F be the set of faces ofA that are fully covered by at
leastL/4 sensors fromS(γ). F includes all faces insideγ
and some faces outside. For any face not inF , the load of
S \ S(γ) must be at leastL − L/2 − L/4 = L/4, so we
can ignore it. Consider the faces inF . Crop the squares of
S(γ) according toF as in the proof of Theorem 3.2. After
cropping, by construction the load at each face ofF remains
at leastL/4. Apply Lemma 3.1 withU = F andS(γ),
which yieldsΩ(L/ ln(nmax/L)) covers while the remaining
sensors have load at leastL/8 for any face ofA. 2

Remark. These results extend to convex shapes that admit
small cuttings: disks, ellipses, etc.

4 Sensor Cover

Now consider the generalSENSOR COVER problem, in
which eachR(·) is an arbitrary subset of a finite setU
of size |U | = O(n). We show that a random schedule
of the sensors yields anO(log n)-approximation with high
probability. This result extends that of Feige et al. [6], which
deals with the unit-duration case.

Let T = cL/ ln n, where c is some constant to be
determined later. We show that if we choose the start time
of each sensor randomly between 0 andT , then we will
have a valid schedule with high probability. In order to
avoid fringe effects, we must choose positions near 0 or
T judiciously. More precisely, for a sensors of duration
d(s) < T , we choose its start timet(s) uniformly at random
between−d(s) and T ; if t(s) < 0, we reset it to 0. If
d(s) ≥ T , we simply sett(s) = 0. Divide T evenly into
2n time intervals[t0 = 0, t1], [t1, t2], . . . , [t2n−1, t2n = T],
each of lengthT/2n. If d(s) ≥ T/n, then for anyx ∈ R(s)
and in any time interval,x is covered bys with probability
at least(d(s)− T/2n)/(T + d(s)) ≥ 1

4 · d(s)/T .
Consider anyx ∈ U , and let{s1, . . . , sk} be the set of

sensors live atx with durations at leastT/n. We know that∑k
i=1 d(si) ≥ L − T/n · n ≥ L/2. In any time interval

[ti, ti+1], the probability thatx is not covered is at most

k∏

i=1

(
1− d(si)

4T

)
≤

k∏

i=1

exp
(
−d(si)

4T

)

≤ exp
(
− L

8T

)
= exp

(
− ln n

8c

)
= n−

1
8c .

There areO(n2) different (x, [ti, ti+1]) pairs, so the proba-

bility that somex ∈ U is not covered at some time is at most

O(n2) · n− 1
8c = O

(
n2− 1

8c

)
. With c < 1/16, we obtain a

valid schedule with high probability.
The algorithm can be de-randomized using the method

of conditional probability. We omit the details.
SET COVER PACKING reduces toSENSOR COVER.

Given an optimal schedule for an instance ofSENSOR

COVER, we can “snap” each starting timet(s) to the inte-
ger dt(s)e without introducing gaps or decreasing the total
duration. Hence, the lower bound of Feige et al. [6] applies.

THEOREM 4.1. There exists a polynomial-timeO(log n)-
approximation algorithm for theSENSOR COVER problem.
This bound is tight up to constant factors.

5 Open Problems

Ideally we would like to prove stronger hardness results or
find better approximation algorithms in order to narrow the
gap between our lower and upper bounds. In fact, we have
not ruled out the possibility of a PTAS for theRESTRICTED

STRIP COVER problem, although it cannot be in terms of
L. It would be interesting to see if other techniques for
geometric optimization problems could be applied to our
problem as well.

We are also interested in understanding preemptive
schedules better. ForRESTRICTED STRIP COVER, a sim-
ple algorithm based on maximum flow yields an optimal
preemptive schedule in polynomial time. In higher dimen-
sions, however, it is not fully understood in which situations
non-preemptive schedules are sub-optimal when compared
with the best preemptive schedules. For example, using es-
sentially the same argument as in the NP-hardness proof for
CUBE COVER, we can show that its preemptive variant re-
mains NP-hard. In general, we would like to uncover the
relationship between the load of the problem instance, the
duration of the optimal preemptive schedule, and the dura-
tion of the optimal non-preemptive schedule.

Acknowledgements. We thank Nikhil Bansal for pointing
us to the paper by Kenyon and Remila [8] and Piotr Indyk
for fruitful discussions.

References

[1] Z. Abrams, A. Goel, and S. Plotkin. Set K-cover algorithms
for energy efficient monitoring in wireless sensor networks.
In Proc. 3rd Int’l. Symp. Information Processing in Sensor
Networks (IPSN), pages 424–432, 2004.

[2] P. K. Agarwal and J. Erickson. Geometric range searching
and its relatives. In B. Chazelle, J. Goodman, and R. Pollack,
editors,Advances in Discrete and Computational Geometry,
pages 1–56. American Math. Soc., 1999.

[3] A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and
M. Thorup. OPTversusLOAD in dynamic storage allocation.
SIAM J. Computing, 33(3):632–46, 2004.

[4] S. Dasika, S. Vrudhula, K. Chopra, and R. Srinivasan. A
framework for battery-aware sensor management. InProc.
Design, Automation and Test in Europe Conf. and Expos.
(DATE), pages 1–6, 2004.

[5] M. de Berg and O. Schwarzkopf. Cuttings and applications.
Int’l. J. Comp. Geom. & Appl., 5(4):343–355, 1995.

[6] U. Feige, M. M. Halld́orsson, G. Kortsarz, and A. Srinivasan.
Approximating the domatic number.SIAM J. Computing,
32(1):172–195, 2002.

[7] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Free-
man and Company, 1979.

[8] C. Kenyon and E. Remila. A near-optimal solution to a
two-dimensional cutting stock problem.Math. of Op. Res.,
25(4):645–656, 2000.

[9] M. Perillo and W. Heinzelman. Optimal sensor management
under energy and reliability constraints. InProc. IEEE
Wireless Communications and Networking Conf. (WCNC),
pages 1621–1626, 2003.

[10] S. Slijepcevic and M. Potkonjak. Power efficient organization
of wireless sensor networks. InProc. IEEE Int’l. Conf. on
Communications (ICC), pages 472–476, June 2001.

A Details for Section 2

A.1 Proof of Lemma 2.1 Given a setY of unit-duration
sensors, all live at some fixedx-coordinatex0, an integer
group-duration parameterD, and a sufficiently small positive
ε, there is a setG of groups, each of durationD, such that
for anyi, LG(i) > LY (i)/(1 + ε)− 4Dd1/εe.

Proof: It is convenient to view a sensors as a point
(`(s), r(s)) in the plane. Note that all sensors live atx0 are
inside the rectangleRx0 = {(x, y) : x ≤ x0 ≤ y}. (See
Figure 3.) First we partition the sensors ofY into strips by
repeating the following as long as sensors remain.

(1) Create a vertical strip containing the at mostDd1/εe
sensors that remain with the smallest`(·) values.

(2) Create a horizontal strip containing the at most
Dd1/εe sensors that remain with the largestr(·) values.

Now for every vertical strip ofY , take the sensors in
order of decreasingr(·) value in groups of sizeD. (We may
discard the last< D sensors in the last strip.) Similarly, for
every horizontal strip, take the sensors in order of increasing
`(·) value in groups of sizeD. (We may discard the last
< D sensors in the last strip.) Replace each groupX
with a larger rectanglesX with `(sX) = maxs∈X `(s),
r(sX) = mins∈X r(s), andd(sX) =

∑
s∈X d(s) = D.

Consider anyi ≤ x0 (the casei > x0 is symmetric),
and examine Figure 3(c). All sensors live ati are inside the
rectangleRi = {(x, y) : x ≤ i ≤ y}. Assume that the line
x = i intersectsk horizontal strips; thenRi entirely contains
at leastk − 1 vertical strips, soLY (i) ≥ (k − 1)Dd1/εe.
For any group completely insideRi, it contributesD to both
LY (i) andLG(i); for any group completely outsideRi, it
does not contribute anything to eitherLY (i) or LG(i). So

only the groups in thek horizontal strips and the single
vertical strip intersected by the linex = i contribute to the
difference, that is,LY (i) − LG(i) < kD + Dd1/εe + D,
where the last term accounts for the fewer thanD sensors
that we did not group in the last strip. Therefore,

LG(i) > LY (i)− (k − 1)D − (2 + d1/εe)D
≥ (1− ε)LY (i)− 2Dd1/εe
≥ 1

1 + 2ε
LY (i)− 2Dd1/εe,

for any ε ≤ 1/2. Replacingε with ε/2 gives the desired
result. 2

A.2 Proof of Theorem 2.3 For any sufficiently small pos-
itive ε, there is an algorithm that runs inpoly(n, 1/ε) time
and gives a schedule to theRSCproblem with duration at
leastL/(1 + ε)−O

(
γdmax/ε4

)
.

Proof: We are going to apply Steps (1)–(3) of Algorithm
1 repeatedly, grouping the smaller sensors so as to increase
dmin until log(dmax/dmin) becomes small enough that we
can apply Theorem 2.2 to the resulting rectangles.

For ease of presentation, we assume that1/ε is an
integer. Letr denote the ratiodmax/dmin. Assume first
that log r ≥ 1/ε, and setµ = ε/ log r andD = dµ4dmaxe.
Apply Steps (1)–(3) of Algorithm 1 toSs, the set of sensors
of duration at mostd′max = dµDe, with group durationD
and error parameterµ. This yields a set of rectanglesGs of
durationD such that for anyi and some constantc1

LGs(i) >
1

1 + µ
LSs(i)−O

(
γd′max log(d′max/dmin)

µ3

)

>
1

1 + µ
LSs(i)−O(γµ2dmax log(µ5r))

>
1

1 + µ
LSs(i)−

c1γε2dmax

log r
.

Now considerGs as a set of sensors and the new
problem instanceS ′ = Gs ∪ (S \ Ss). Its load ati is

LS′(i) >
L(i)
1 + µ

− c1γε2dmax

log r
.

Moreover, the new minimum duration of this problem in-
stance is at leastd′max, and the maximum duration remains

dmax, so the new ratio isr′ ≤ dmax
d′max

≤ 1
µ5 = log5 r

ε5 ≤ log10 r,

sincelog r ≥ 1/ε. Forε sufficiently small, we haver′ ≤ √
r;

hencelog r′ ≤ 1
2 log r.

Iterate the above procedure, each time using new error
parameterµ′ = ε/ log r′, until it yields a problem instance
S∗ with minimum durationd∗min for whichr∗ = dmax/d∗min

is such thatlog r∗ < 1/ε. Let r0, . . . , rk = r∗ be the
sequence of ratios andL0(i) = L(i), L1(i), . . . , Lk(i) =

8 1 4 5 6 7 2 8 1 3 4 5 6 7 2

8

1

 3
 4

5

 6

 7

 2

 3

A

B

C

D

B

A

C

D

x = y = x0

(a) (b) (c)

x = i

0 0

0

Figure 3: [3] (a) Four sensors. (b) The sensors of (a) viewed as(x, y) points. (c) Grouping a set of sensors withD = 2
andε = 1/2. The rectangleRx0 contains the setY of sensors. The sensors are first partitioned into alternating vertical and
horizontal strips ofDd1/εe = 4 each. Within each strip, the sensors are grouped (dotted lines) into groups ofD = 2. The
groups that intersect the linex = i are shaded.

L∗(i) be the sequence of loads. For some constantc2

L∗(i) >
1

1 + ε/ log rk−1
Lk−1(i)− c1γε2dmax

log rk−1

>
1

1 + ε/ log rk−1
×

(
1

1 + ε/ log rk−2
Lk−2(i)− c1γε2dmax

log rk−2

)
−

c1γε2dmax

log rk−1

...

>

(
k−1∏

i=0

(
1 +

ε

log ri

))−1

L(i) −

k−1∑

i=0

(
1

log ri

)
c1γε2dmax

≥ 1
1 + c2ε/ log r∗

L(i)− 2
log r∗

c1γε2dmax

> L(i)/(1 + 2c2ε
2)− 4c1γε3dmax.

Let L∗ = minp LS∗(i). Finally, apply Theorem 2.2 to
S∗, which yields a schedule of duration at least

1
1 + ε

L∗−O

(
γdmax log r∗

ε3

)
≥ 1

1 + c4ε
L−O

(
γdmax

ε4

)
,

for some constantc4. Replacingε with ε/c4 gives the desired
result. 2

