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Abstract a sensor network has been established, how can we maxi-
Suppose we are given a set of objects that cover a region anthize the lifetime of the network? It is clear that the limited

duration associated with each object. Viewing the objects as joB%ttery capacities of sensors is a key constraint in maximiz-
can we schedule their beginning times to maximize the length.o

time that the original region remains covered? We call this probldifl the lifetime of a network. Additionally, research shows
the SENSORCOVER PROBLEM. It arises in the context of coveringthat partitioning the sensors into covers and iterating through

a region with sensors. For example, suppose you wish to mof"l‘ﬁcﬁm in a round-robin fashion increases the lifetime of the
activity along a fence (interval) by sensors placed at various fixe

locations. Each sensor has a range (also an interval) and limfgdWork [1, 4,9, 10].

battery life. The problem is then to schedule when to turn on the e i
sensors so that the fence is fully monitored for as long as possibte: finitions. Let S be a set of sensors. Each sensoe S

This one-dimensional problem involves intervals on the reg@n be viewed as a point in some space with an associated
line. Associating a duration to each yields a set of rectangiesgion R(s) of coverage. For every poiatc R(s), s is live

in space and time, each specified by a pair of fixed horizontgl ; ;
endpoints and a height. The objective is to assign a bottgﬁx' Let I/ be the region to be covered B U is covered

m . .
position to each rectangle (by moving them up or down) so (é?s’ someR C Sif U C U,cr R(S); We caI!R afeas!ble
to maxt;mlzsv the naﬁ_ht at W(I;_Ich the Splanmg? EﬁéfrElterval is fullgover Every sensos € S can beactivefor a finiteduration
covered. e call this one-dimensional pro STRICTED o _

STRIP COVERING. If we replace the covering constraint by ad(s)' Letdimin = mines d(s), anddimax = maxses d(s).
packing constraint (rectangles may not overlap, and the goal is to

minimize the highest point covered), then the problem becomesopLEM 1.1. (33NSORCOVER) Compute ascheduleS
identical to DYNAMIC STORAGE ALLOCATION, a well-studied : : ; : ;
scheduling problem, which is in turn a restricted case of the wgﬁ maxmumdura_tlon T, in which each sensos < S !S
known problemSTRIP PACKING. assigned astart timet(s) > 0, such that anyx € U is
We present a collection of algorithms fRESTRICTEDSTRIP  covered by some active sensor at all ties ¢ < 7. That

COVERING. We show that the problem is NP-hard and present : .
O(log log log n)-approximation algorithm. We also present bett(f#] forallz € Uand0 < ¢ < T, there is some & S with

approximation or exact algorithms for some special cases, inclad< R(s) andt(s) <t < t(s) + d(s).

ing when all intervals have equal width. For the gene3aN-

SOR COVER PROBLEM, we distinguish between cases in which . . h leS if |

elements have uniform or variable durations. The results de- A S€nsor isredundantin a scheduleS' if it can be
pend on the structure of the region to be covered: We giver@moved without decreasing the duration$f A schedule

polynomial-time, exact algorithm for the uniform-duration casgjith no redundant sensorsisinimal It suffices to consider
of RESTRICTED STRIP COVERING but prove that the uniform-

duration case for higher-dimensional regions is NP-hard. We g8y minimal schedules, which may not utilize all sensors.
some more specific results for two-dimensional regions. Finally, W a convention, we sefs) = oo if s is unused.

consider regions that are arbitrary sets, and we presen{lag )- Prior work on theSENSORCOVER problem has focused
approximation algorithm for the most general case. solely on the case where the regioR-) are arbitrary
subsets ofU and the durations are all identical. This
) assumption yields gacking constraint, and the problem
Sensors are small, low-cost devices that can be placed igduces to partitioning the set of sensors into a maximum
works have become increasingly more popular as advangesyer PackiNG and islnn-hard to approximate, with a
in MEMS and fabrication allow for such systems that Caflatching upper bound [6].
perform sensing and communication. How sensors commu- |n practice, these assumptions appear overly constrain-
nicate is a well-studied problem. Our main interest is: Onmeg_ Sensors will have arbitrary durations and typically de-
fine geometric regions of coverage: intervals, rectangles,
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Table 1: Summary of results.
Shape of sensok Uniform duration \ Variable duration

Intervals exact in P NP-hard,0O(log log log n)-app_rox.,
(2 + €)-approx. for equal-width
Convex with NP-hard,O(log(ndmax/L))-approx.; i i
small cuttings | O(log(Lmax/L))-approx. when congruent & fat NP-hard,O(log n)-approx.
. log n-hard to approx., log n-hard to approx.,
Arbitrary sets O(log n)-approx. [6] O(log n)-approx.

considelSENSORCOVER, when theR(+)’s are arbitrary sub- work showed the first maximization problem proved to be
sets of a sel of sizeO(n), with varying durations (in con- approximable within polylogarithmic factors but no better.
trast toSET COVER PACKING). The practical motivations for studying this problem have

In general, a schedule may activate and deactivaténspired the development of numerous heuristics. Slijepcevic
sensor more than once. We call thigraemptive schedulé& and Potkonjak [10] introduce th8eT K-COVER problem,
non-preemptive schedutea schedule in which each sensorhere they are given a set of subsets of a base set and an
is activated at most once. In this paper we only consider ihéeger £ and ask if it is possible to construct at ledst
non-preemptive problem. We have some preliminary resutisjoint set covers. They prove th8ET K-COVER is NP-
for the preemptive case, but more research is needed to gamplete, which is implied by Feige et al.’s result [6], and
a better understanding of the differences. present a heuristic for constructing disjoint set covers.

Our results. We show that most variants 8ENSORCOVER Perillo and Heinzelman [9] stu_dy a varla_tlor_1 of this
Fproblem, where they want to maximize the lifetime of a

are NP-hard, and we study approximation algorithms. For . .
any pointz € U, let L(z) — Zses,slive . d(s) be the multi-mode sensor network. They compute all possible fea-

. ; i sible covers and then translate their problem instance into
load atz . Define the overalload L = min, L(z); let a graph. Each sensor and feasible cover becomes a node
Lyax = max, L(z). We write Lx (rsp., Lx(x)) for the grapn. )

load of any subseX of sensors (rsp., at). OPT denotes Sensors are connected to a feasible cover if they are con-

the duration of an optimal schedule; a trivial upper boundtl%Ined in that _f§a5|ble cover. They use linear programming
L i . to model additional energy constraints and solve a maxi-
OPT < L. All our approximation ratios are with respect to

L. ThatOPT < L allows the assumption tha,,, < L. mum flow problem on .th|§ graph.. Their solution, wh!le opti-
; mal, can be exponential in the size of the problem instance.
Table 1 summarizes our results. Notably, fRe- Dasika et al. [4] also compute all possible feasible covers
STRICTED STRIP COVER, we give anO(logloglogn)- and develo .heuristics fors?/vitchin pbetween these covers in
approximation algorithm for the general case andl)- b 9

S . . . order to maximize the lifetime of their sensor network.
approximations for some special cases, includirig a ¢)- : o

S . ’ Abrams, Goel, and Plotkin [1] study a variation of the
approximation when all intervals have equal width. For

CUBE COVER, We give approximations that extend to angroblem where they are given a collection of subsets of a

. S X . _bhase set and a positive integer> 2. Their goal is to par-
convex shape with small cuttings: rectangles, disks, eIhpsgtslbn the subsets inté covers. where the area of coverage
etc. We discusKRESTRICTED STRIP COVER in Section 2, ' ge,

CuBE COVERin Section 3, and the geneiBNSORCOVER defined as the cz_;trdinality of a se_t, is_ maximiz_ed across _aII

. ; k covers. They give three approximation algorithms for this
problem in Section 4. ) : ! L

problem: a randomized algorithm, a distributed greedy algo-

Related Work. SET CovER PACKING was studied by rithm, and a centralized greedy algorithm. Their random-
Feige et al. [6]. They considered tilBOMATIC NUMBER ized algorithm partitions sensors within— % of the op-
problem, where the goal is to maximize the number tifnal solution. Their distributed greedy algorithm gives a
disjoint dominating sets on the set of vertices of a graph. %Aapproximation ratio. Their centralized greedy algorithm
dominating sein a graphG = (V, E) is a setV’ C V of achieves an approximation factor bf- % They also prove
vertices such that every € V is either contained iV’ or a%-hardness result for their problem.
has a neighbor iV’. Feige et al. show that thBOMATIC We are unaware of previous work on tRESTRICTED
NUMBER problem is hard to approximate within a factor o§TrIP COVER problem. Some of the closely related prob-
(1 —¢)In|V| for e > 0, by first showing the hardness ofems are well studied, however. If we replace the covering
approximation of theSET COVER PACKING problem. Note constraint by a packing constraint (rectangles may not over-
that theSET COVER PACKING problem is a combinatorial lap, and the goal is to minimize the height of the highest
version of our problem, with each subset being a regipwint covered), then the problem beconesnAMIC STOR-
of unit duration. Feige et al. also give a randomizee.- AGE ALLOCATION [7, Problem SR2], for which there is a
approximation algorithm, which they derandomize. Their



(2 + ¢)-approximation [3]. If we further allow rectangles tescheduleS while maintaining the following invariants after
move both vertically and horizontally, then the problem bseheduling sensors if;: (i) no sensors overlap at any
comesSTRIP PACKING, which has &1 + ¢)-approximation coordinate> i, and (i) M (S, i) = L.

up to an additive term [8]. Wheni = 0, select anyL sensors that are live &t
and schedule them without overlap, establishing the initial
2 Restricted Strip Cover invariants. Assuming the invariants are truei,aschedule

Consider an instanc& of RESTRICTED STRIP Cover Si+1 as follows. If there are no gapsat 1, we are done, as
(RSQ). For ease of presentation, we defiRés) as a semi- the invariants e>_<tend to+ 1. Otherwise, assume t_here are
closed interva[((s), r(s)) for eachs € S; thewidthof s is # > 0 unit-duration gaps at+ 1. At leastk Sensors irs;

r(s) — £(s). We assume w.|.0.g. that all interval coordinatd8ust be unscheduled, which can be used to fill the gaps.
are integers in[0,2n — 1] and thatU = [0,2n — 1), ] ] )

because there are at magt distinct interval endpoints. 2-2 A Dynamic Programming Solution for Small L We

It is convenient to view scheduled sensors as semi-clo$i¢f & dynamic program to determine if there is a schedule
rectangles in the plane, with intervals along thexis and S Such thatV/(S) = T for a fixedT'. The dynamic program
durations along thej-axis. Thus a valid schedul§ of is similar to that of Buchsbaum et al. [3], but we need a new

duration 7 is one in which any poin{z,y) in the sub- analysis, as thei'r analysis yvould yield afl™) time bound
planeU x [0,T) is covered by some sensari.e., {(s) < here. B_elow we ignore portions of sensors that extend above
x < r(s)andt(s) < y < t(s) + d(s). The problem levelT'inany schedule. _

is equivalent to sliding axis-parallel rectangles vertically to  Define S<i = Uj<;<; Sk. Consider some schedules
cover a rectangular region of maximum height. Thereforé,—1 Of Si—1 and S; of §; such thatM (5;1,i — 1) =
in this section we use the terms “sensor” and “rectanglé?(5i;i) = T. We say thatS;_, and.5; arecompatibleif
interchangeably. We say two or more rectanglesrlapif () forall s € S;_1 N'S;, ts,_,(s) = ts,(s); and (i) for

they cover some common point. When discussing multig J € [0,T), (i,7) is covered byS; , or S;. The first
schedules, we writés(s) to denote the start time of in condition stipulates that any sensor in both schedules must

some scheduls. have the same start time in each; the second requires a sensor
We assume all durations are positive integers. $.6e i S: to be scheduled to cover each level at which coverage

some schedule . Definelevelj of S to be the horizontal StOPS ati — 1 in S;_;. For eachi, we populate an array
slice of sensors that cover points in theange[j — 1,). A Ci indexed by possible schedules&f For anys;, define
gapis a pointp such that no sensor covess Fori € U, C;[S;] = lifthereis a schedulf of S<, that respects; qnd
defineM (S, ) to be the greategtcoordinatej such that no NasM (S, z) = T for 0 < z < i; andG;[S;] = 0 otherwise.
gap exists belowj ati; i.e., M(S,i) = max{j : Vj < ThenC;[S;] = 1ifand only if M (S;, i) = T and there exists
j,3s € S, scovers(i,j/)}. Then theduration of S is SOme schedulé; , of 5;; such thatC; [S5;—,] = 1 and
M(S) = min; M(S, 7). Si-1is compatible withS;. Fori = 0, Cy[So] = 1 for
Our main results are aB (log log log n)-approximation Precisely those schedule of Sy that haveM (So,0) =
for arbitrary intervals and & + ¢)-approximation for inter- 7- The dynamic program then populates the arr@ysn
vals whoser-projections are non-nested, which includes thgcreasing order of, by chgcklng ?‘” schedules &; for
case of uniform width. We use three main components: €achi. Ultimately we check if there is some schedlg,
of Sa,,—1 such thatCsy,,—1[S2,—1] = 1.
1l a sim'ple, exagt algorithm if all sensors have the sargggt Analysis. For a schedules; of S;, denote byd(S;)
duration (Section 2.1); the vertical boundaries of the union of the rectangles.of

: . . . If S; is part of a minimal schedul§ of durationT’, then
2. an exact, dynamic programming algorithm, which runasn rectangle ofS; must cover some point o(S;) that
in poly(n) time if L = O(logn/loglogn) and yields y 9 i p i

- is covered by no other rectangles $h. Thus|S;| < 2T,
filorIT-IZ—AZS)' whenl = O(duinlogn/loglogn) (Sec- becaus@(S;) has total lengti2T".
= Because there are at mao&T" sensors per schedule,
3. (1 + ¢)-approximations wher, = Q(dpalogn - there are at most,..) 7" possible schedules o;. Each
min{1/e, 1og(dmax /dmin) } /€*) (Section 2.3). schedule ofS; must be checked for compatibility against
each schedule oF;_;, and checking compatibility of a
2.1 Uniform-Duration Sensors If all sensors have thePar of schedules take®(T’) time. Hence the time to
same duration, a simple greedy algorithm gives an ex&en the whole dynamic program s ((,2)T27)* O(T) =
solution of durationZ. DefineS; = {s € S : sislive ati}. (nT)°") = (nL)°"). To determineOPT, we run the
Assume by scaling that all sensors have unit duration. \@namic program for each of the possible values of’,
proceed left-to-right, starting @ = 0 and constructing a which does not affect the overall asymptotics.



Partitioning the Dynamic Program. It suffices to run the ats). Note thatL (i) < Ly (2), since portions of the sensors

dynamic program only or-coordinates with relatively few in a group that are overlapped or outside the rectangle are

live sensors. LeiX = {i : |S;| < 5T}. We claim thatS not counted inL(:). We give polynomial-time procedures

has a schedule of durati@niff S has a schedul§ such that to group a set” of sensors of unit duration int@ such that

M(S,i) > T for anyi € X. We prove the “if” part; the Lq(¢) is not much smaller thahy (i) for anys.

“only if” part is clear. First, we give a grouping of a set of sensors that are all
Assume that there is a minimal schedSlef duration?” live at a fixedz-coordinate. The following adapts Lemma

that only coversY. We show how to schedule the sensors natl of Buchsbaum et al. [3], and the proof is similar, although

used inS to cover allz-coordinates. Consider any maximasimpler; details are in Appendix A.1.

interval X of z-coordinates not inX. At most47 sensors

from S are live at anyi € X, because any such sensdfEMMA 2.1. Given a sel” of unit-duration sensors, all live

is also live at eithemin(X) — 1 or max(X) + 1, and at at some fixedr-coordinate z,, an integergroup-duration

most27 are live at either one. By construction, there a@arameterD, and a sufficiently small positive there is a

at leastsT" sensors live at any € X, so there are at leastSetG of groups, each of duratio, such that for anyi,

5T — 4T = T sensors live at that are not used by and Lc (i) > Ly (i)/(1 4+ €) — 4D[1/e].

hence are available, which suffice to cover all the levels at - .

If such a sensos should also be live at anothérc X (or .We. fow partition the input so that we can apply Lemma

anotheri’ in anotherX"), it reduces by one both the numbe?'1 individually to the parts.

of potential uncovered levels and the number of availalgr\\r1on 2.1. A ~y-groupingis a partition of sensors into
sensors live at’, so enough sensors will remain:at a set of groups such that: (1) In each group, there is an

Therefore we need only run the dynamic program on th@ - o._coordinate); at which all sensors in the group are

: \ : O o
a-coordinates inX. This takes onlgn- T (  time, because live; and (2) for anyz-coordinatei, the set of sensors live at
there are fewer thabil’ sensors live at anye X. i are drawn from no more thas groups.

THEOREM2.1. RSCcan be solved in timen - LO@), . .
Notes. Sensors in a group may share many anchors in

COROLLARY 2.1. RSC can be solved irpoly(n) time if common; the anchor of t_he group is one di.sting_uis.hed from
L < ¢ -logn/loglog n for any constant. this set. Not all sensors live at an anchor will be in its group.
Also, the existence of @-grouping is a purely combinatorial
Using a standard trick, a PTAS follows directly byroperty of a family of ranges, like the canonical subsets
appropriately truncating durations. used in range searching [2].

COROLLARY 2.2. There is a PTAS foRSCif L < ¢- LEMMA 2.2. Given a setZ of unit-duration sensors that
dimin log n/ log log n for any constant. admits a~y-grouping, an integeigroup-duration parameter
D, and a sufficiently small positive there is a setz of

2.3 Algorithms for Small Durations We now have algo- groups, each of duratio, such that at any:-coordinate
rithms for the cases of uniform duration and large durationsLc (i) > Lz(i)/(1 4 €) — O(yD/e).
(relative to load). Here we consider the case when all du- i )
rations are small relative to load. To do so, we developP&00f: Let G be ay-grouping of Z. ~Each group in
groupingtechnique, which builds on tHeoxingtechnique of G possesses an anchor and thus satisfies the premises of
Buchsbaum et al. [3]. Although we follow the rough out-6Mma 2.1. Apply Lemma 2.1 to each group Gf Let
line of their technique, the covering (as opposed to packirlg)P€ the set of anchors, and [E{ denote the set of all the
nature of our problem necessitates new ideas. sensors in the group that hags an anchor.

The basic idea of grouping is to group shorter sensors Considerany-coordinate. By Lemma 2.1 and the fact
into longer, virtual sensors until all the sensors have eqift theZ. form a partition,L¢(i) > >,y (Lz, (1)/(1 +

duration, at which point the greedy algorithm is invoked) — 4P [1/¢€]). By they-grouping property, there are only

Ensuring that the load does not decrease too much durinfflevant terms in the summation, 8e;(i) > Lz (i)/(1 +
the process is the key to our algorithms. €) = 4yD[1/e]. m

Grouping Sensors. A groupingis a partition of a set” | emma 2.3. Any set ofintervals has afi(log n)-grouping.
of sensors into a set of groups, each of which is then

replaced by a rectangle that can be covered by the sengomof: Build an interval tree7 on the intervals. For
in the group. Thalurationof a group is that of the rectangleeach nodey of 7, form groupZ, containing the intervals
that replaces it. These rectangles form a modified instanassociated withv. Clearly, thez-coordinate of the dividing
L¢ (rsp.,Lg (1)) is defined to be thibad of the groupgrsp., line corresponding te is a valid anchor of the groug,,.



IO e Algorithm 1 Approximation algorithm via grouping

(1) Truncate each sensor of duratioto [(1+¢)*], where
(14 €)* < d < (1+ ¢)k*! for some integek. Let X be

][ ][ ][ I ][ ][ ][ ]

i
i ][ I ][ ]
i
[

B
L j the set of truncated sensors.
(2) For eachd = [(1 + )], k = [logy e dmin],-- -,
Figure 1: A bad example for grouping. [log . dmax — 1], do the following. LetX, denote the

set of truncated sensors of duratidrScale each sensor in
X4 down by a factor ofi, apply Lemma 2.2 with group-
T has deptfO(logn). For nodes:, w at the same level  qyration parameteiD /d] and the giver, and then scale
of 7, setsZ,, and Z,, are disjoint. Thus, the intervals live at the obtained groups back up by
anyz-coordinate are distributed amotyflog n) groups.0  (3) Let G be the set of rectangles obtained from Step (2).
Remark. This bound is tight in general. Consider any Truncate them so that they all have duration exaglly
grouping of the example in Figure 1. L&t be[0,1]. We Call the resulting set of rectanglés.
show there must be ancoordinate; such that the sensors (4) Apply the greedy algorithm t6".
live at ¢ belong toQ2(logn) groups. Initially, ¢ might lie
anywhere inJ. SensorA is assigned to some group; assume
w.l.0.g. that the anchor of this group lies in the left halfqf of the RSC problem with duration at leasf /(1 + ¢) —
i.e., [0,0.5). Restrict the range of candidatecoordinates O (Ydmax 10g(dmax/dmin)/€*).
for ¢ to [0.5,1]. Note that all groups involving intervals in ) ) ]
this range (likeB) must be different from’s group. Repeat Proof: We will show that truncating and grouping do not
this process with3. As the range of candidatecoordinates decrease the load at angxcessively.
for i thereby decreases, we maintain an increasing set of BY Leémma 2.2, Step 2 produces a groupéigof X, of
intervals that all must belong to different groups. TH&Uration|D/d]d such thatatany, Le, (i) > Lx,(i)/(1 +
process terminates aft&log n) steps. €) — O(yD/¢). Summing over alii, we have

More structure on the intervals allows for better group- 1 <7D log(dmax/dmin))

ings. Consider families afon-nestedntervals, in which no La() > o T -Lx(@) -0 clog(1 + )
interval properly contains another. Uniform-width intervals
. 1 . 'Ydmax log(dmax/dmin)
are a special case. = ?Lx(z) -0 3 :
€ €

LEMMA 2.4. Collections of non-nested intervals adrit

groupings. Truncating the sensors in Step (1) decreases their dura-

tions by a factor of at most + ¢, so Lx (i) > %JrsL(i).
Proof: In non-decreasing order by left endpoint, greedily adduncating the groups in Step (3) also decreases their du-
intervals into the first group as long as they all share semerations by a factor of at mosi% < DTer <1+e
coordinate. When no further progress can be made, creagice ——. > we haveLq (i) > L(i)/(1 +

1
d R (14+€)2 = 1+7¢’

new group an continue. ) 7€) — O (Ydmax 10g(dmax/dmin) /€*). Finally, applying the
Consider three groupd, B, C' created in consecutivegraady algorithm in Step (4) yields a schedule of duration

order. Letsa, sp, andsc be the first intervals picked inmin'LG/(i) > L/(14 7€) — O(ydmax 10g(dmax/dmin ) /€3).
e_ach group. By assumption, all interyaIsAnare live at the Replacing with ¢/7 gives the desired result. O
right endpomt ofs 4. I_f e anqSB are Ilvg at some common By bootstrapping Steps (1)—(3) of Algorithm 1, we can
x-coordinate, ther is also live at the right endpoint fs, replace the) (1og(dimax /dmin)) factor withO(1 /¢), yielding

which is not possible, since; started a new group. the following result, the proof of which is in Appendix A.2.
Thus, s4, sp and s¢ are mutually disjoint. Since no

interval of C has its left endpoint to the left of that f;, no THEOREM2.3. For any sufficiently small positive, there
interval of A can be live at am-coordinate of an interval of is an algorithm that runs impoly(n, 1/¢) time and gives a
C, or sp would be nested. Hence, all intervals active at agghedule to th&SCproblem with duration at leask /(1 +
z-coordinate between the left endpointssgf andsc must €) — O (vdpax/€*).

be fromA or B. O

The Algorithm. Henceforth, we assume that the ianfEOROLLARY 2.3. There is a consta_nt, sugh that for any
admits ay-grouping. By Lemma 2.3y = O(log n). Lete be small enough positive real the algorithm gives a schedule

a sufficiently small error parameter, and [et= dyax [1/€]. of duration at least. /(1 + ¢) forany L > ycdmax/€”.

THEOREM2.2. For any sufficiently small positive, Al- 2.4 Putting the Pieces TogetheTheorem 2.3 yields a
gorithm 1 runs inpoly(n,1/¢) time and gives a schedulegood approximation only whed,,. is small. On the other



hand, Corollary 2.2 yields a good approximation whigp,
is large. We need the following technical lemma. 4 G —

B
LEMMA 2.5. For any partition{R4, ..., Ry} of S and any s D H
z-coordinatei, someR; has load at least./k at i; define 2
m(i) to be any such. 1 1A c E

F

Proof: By contradiction, if there were somesuch that 0 —
Lg,(i) < L/kfor1 < j < k, thenLs(i) < L. Set 0 1 2 3 4 5
m(i) = argmax;{Lg, (i)} O

Consider the case whep = O(1). Fix a parameter rigyre 2: [3] A set of sensors (in the forfd(-), r(-), d(-)))
f, and partitionS' into two subsets:R, consisting of all 4 — (0,1,3), B = (0,3,1), C = (1,2,2), D = (1,4,1),
sensors with duration at least. (the large sensors), ath £ — (2.3.1), F = (2,5,1), G = (3,4,2), and H =
containing the remaining (small) sensors. Invoking Lemma 5 3). The shaded region is a gap. In this example; 4
2.5, for eachj, we useR; to cover all thez-coordinates pyt OPT = 3, which can be realized by sliding down so
i wherem(i) = j. Then by settingd = €¢°/(vc): for thatt(G) = 1.
Ry, Corollary 2.2 yields a solution of duration at least
L/(2(1+¢)); and forR,, Corollary 2.3 yields a solution of
duration at least,/(2(1+¢’)). Combining the two solutions, Lemma 2.3 thaty = O(log n), requiring¢ > 3logloglog n,
we obtain a solution of duratioh/(24-2¢’). Settinge = ¢/ /2  thereby yielding ard (log log log n)-approximation.

gives us our first result: . N
THEOREM2.5. There exists a polynomial-time constant-

THEOREM 2.4, There exists &2 + ¢)-approximation for factor approximation for theRSCproblem on collections
RSCfor inputs that admitD(1)-groupings. of intervals that admitO(logn/ log log n)-groupings. For
general collections of intervals, there exists a polynomial-
COROLLARY 2.4. If all sensors have equal width, we caime O (log log log n)-approximation algorithm.
obtain a(2 + ¢)-approximation forRSC
. 2.5 HardnessTo prove thatRSCwith variable durations
Proof: This follows from the above and Lemma 2.4. O s Np.hard, we exploit an identity tDYNAMIC STORAGE
If v is an increasing function of, we must introduce A, | ocation in a special case. An instance BSA is
a middle layer in the decomposition of sensors. Place gll, one of RSG, except that the instance load is defined
sensors of duration at least= Lloglogn/logn into St 55 the maximum load at any-coordinate, and the goal is

Ro. Fix a parametet, :zmd forl ?_fg ¢, place all sensors, chequle the sensorplfs in DSA parlance) without
of duration between /2" andh /2" into SetR;, truncating qyerjan to minimize the makespan. If the load is equal for

all their durations toh/2; this at worst doubles the overally;, z-coordinates, the®PT — I for either problem implies

approximation ratio. Place all sensors of duration at MASL hedule that is a solid rectangle of hei@iRT — L.

h/2%in Ry , _ Stockmeyer proves that determining if there exists a
We callR, thelarge subsetR;, 1 < = ¢, themiddle oo tion toDSA of a given makespan is NP-complete [7,

subsetsa_degH the small subset '”VOk'”Q Lem.ma 2.5, Problem SR2]. In fact, he proves that giveD8A instance

for eachj, we useR; to cover all ther-coordinates where iy, niform load, determining iIOPT = L is NP-complete,

m(i) = j. For the large subset, we use Corollary 2.2 to find@ea, it qurations are restricted to the $et2}, and by the
schedule of duration at leas ((1+¢)(¢+2)). Foramiddle jp0.q identity, the same is true fRISC.

subsetR;,j > 1, because all its sensors have the same To establish a gap betwedPT and L, consider the
duration, we can use the greedy algorithm to find a SChedHJ&mple in Figure 2, in which — 4 butOPT’: 3. Scaling

of duration at least /(¢ +2). For the small SUbS&.+1, We  gpys that no approximation algorithm can guarantee a ratio
use Theorem 2.3 with = 1. Since the sensors R4 of better thant/3 with respect ta..

have maximum duratiorh/2° = Lloglogn/(2¢logn),
Theorem 2.3 yields a schedule of duration at least 3 Cube Cover
L Lloglogn 3.1 Hardness ResultswWhen theR(-)’s are axis-aligned
2(0 + 2) - RAY; logn rectangles and/ is a two-dimensional region, the problem

is NP-hard even when the sensors have uniform duration,
If v = O(logn/loglogn), then setting = O(1) suffices in contrast to the uniform-duration case RSC We use a
to make the termeTm dominate, yielding a constantreduction from an instance ®fAE-3SAT with » variables
factor approximation. For arbitrary intervals, we know frorandm clauses to an instance GUBE COVER.



An instancel of NAE-3SAT is a setl/ of variables and The basic idea of our algorithms is the following. Take
a collectionC' = {C1, Cs, ...,Cy,, } of clauses ovet/, such a partition ofU with a small number of cells, and then crop
that|C;| = 3 for eachi. The problem is to determine if thereR(-) so that each sensor fully covers a number of cells but
a truth assignment fa/ such that each clause @ has at is completely disjoint from the rest. We ensure that the load
least one true literal and at least one false literal [7]. A k&jpes not decrease by more than a constant factor and then
property is that ifX is a satisfying assignment for an instancapply Lemma 3.1.
I of NAE-3SAT, X is also a satisfying assignment bf

Given I, we construct an associated gra@h/), with THEOREM3.2. If each sensors € S has unit duration,
vertices for each variable and each clause. We draw an et there is a polynomial-tim@(log(n/ L))-approximation
between a clause vertex and a variable vertex if the variadlgorithm for CuBe COVER.
appears in the clause. The graph is drawn on a planar
grid within a bounding box/. From G(I), we construct Proof: We assumel, > clnn for some large constant
an instanceS(I) of CUBE COVER that has a schedule OfptherW|se we just take one cover, aqd the theorem follows. It
duration 2 if] is satisfiable but only 1 if is unsatisfiable. IS Well known that sets of rectangles in the plane adiit)-
Details will appear in the full paper. cuttings: there exists a subset C S of rlogr rectangles

The construction eliminates the possibility of a PTAS &ch that in the partitiotd determined by the rectangles
well. Assume we have a PTAB for CuBe Cover. On Of R, each face is intersected by the boundaries of at most
input (S(I),¢), wheree > 0 and S(I) is an instance of ¢n/T rectangles ofS [5]. We chooser = [2cn/L], so
CuBE CovVER induced by the above constructioh,would en/r < Lf2.
output a solution with duratiof, whereT’ > (1—¢)-OPT. Let f be a face ofAg, and letS; C S denote the
Settinge = 0.25, T > 1.5whenOPT = 2, and0.75 < T < Subset of rectangles that fully contajfh Since the load

1whenOPT = 1. Thus we can usP to solveNAE-3SAT. at every point inf is at leastL and only L/2 rectangles
partially coverf, we derive|S;| > L/2. Now replace each

THEOREM3.1. CuBE COVER is NP-hard and does notrectangleR(s) by a cropped region that consists of all faces

admit a PTAS, even with uniform duration. of Ax thats fully covers. This yields an instance SENSOR
COVER, with a universe of size? log® r and loadL’ > L/2.
3.2 Rectangles With Uniform Duration We consider ap- Applying Lemma 3.1 yields the desired result. O

proximation algorithms if all sensors have unit duration and When all theR(-)'s have the same size, a more careful
scale to get the uniform-duration results in Table 1. First weopping scheme yields an improved bound.

prove a technical lemma, which actually holds for arbitrary
sets. THEOREM3.3. If each sensors € S has unit duration

and eachR(s) is a unit square, then there is a polynomial-
LEMMA 3.1. LetU be anm-element set. Fos € S, R(s) time O(log(Lmax/L))-approximation algorithm forCusg
is an arbitrary subset of/ with unit duration. There exists CoveRr.
some constant large enough, such that if. > clnm,
then in polynomial time we can find a subgetC S and Proof: We assuméd > cln Ly, for some large constant
a schedule ofR with duration at leastZ/Inm so that the c; otherwise we just take one cover, and the theorem follows.
remaining loadL s\ > L/2. We draw a unit-coordinate grill insideU. There are only
O(n/L) cells inT. Foracelly € T, letS(y) C S
Proof: We take covers fron one by one. Letl; be the denote the set of squares®fthat intersecty. Letn,,q, =
load of the remaining sensors after taking ifecover. For max., |S(7)|. Packing arguments impW,,q. < 4Lmax-
the (i + 1)™ cover X, we take each remaining sensor into  Two cells inT" areindependentf they are at least two
X with probability p = clnm/L;. Then we check if (1) grid cells apart from each other in both dimensions. It
X is a valid cover, and (2L.iy1 > L; — 3lnm. Forany is easy to see that we can partitibhinto 9 independent
z € U, the probability thatr is not covered is at mostsetsI';,... Ty, where all cells in any one set are mutu-
(1 —p)* < m~°, so (1) occurs with probability at leasty|ly independent. In the following, we will show how to
1—m!~ (probability of union of events). Foranye U, the make Q(L/ In(nymaz/L)) covers forT'y, such that the re-
probability thatZ; (x) < L;—1 Inmis atmostn~(2*~D*/8  maining load is at leasL/8. Then we repeat the pro-
(Chernoff bound), so (2) occurs with probability at leagiess forl's,..., Ty, and ultimately we derive a schedule
1 —m!=(2¢=1)%/8_Thus we can chooselarge enough that that covers all cells with duratio®(L/In(nmas/L)) =
both (1) and (2) occur with high probability (e.g-, 1/2). Q(L/In(Lyax/L)).
We repeatedly takel' until this happens and then proceed By the definition of independence, we can isolate the
to the next cover. We repeat this procedure ubfil; drops cells in I'; and need only show that for any € I'y,
below /2, and the lemma follows. O we can maké)(L/ In(nmq./L)) covers fromS(+) without



decreasing the load of any of its neighboring 8 cells Ijlity that somer € U is not covered at some time is at most
more than a factor of 8. The load d(y) inside vy is O(n2).p=3 = O (n2=3 ). With ¢ < 1/16, we obtain a

at leastL, so following the approach used in the proof q;alid schedule with high probability

Theorem 3.2, we build a partitiad in v and its neighboring The algorithm can be de-randomized using the method
cells such that each face df intersects the boundaries of al¢ conditional probability. We omit the details

most L/2 squares fronsS(). A has sizer® log® r, where SET COVER PACKING reduces toSENSOR COVER.

r = [2cnmas/L]. We further partition the faces ol that Given an optimal schedule for an instance $£NSOR
intersect the boundary ef such that each face of is either COVER, we can “snap” each starting tiniés) to the inte-

inside v or outside. This at most doubles the size &f ; - : ;

ger [t(s)] without introducing gaps or decreasing the total
Let 7 be the set of faces of that are fully covered F’y a yuration. Hence, the lower bound of Feige et al. [6] applies.
leastL /4 sensors fronS(y). F includes all faces inside

and some faces outside. For any face naFinthe load of THEOREM4.1. There exists a polynomial-timé@(logn)-

S\ S() must be at least — L/2 — L/4 = L/4, so we approximation algorithm for thEENSOR COVER problem.
can ignore it. Consider the faces# Crop the squares of This bound is tight up to constant factors.

S(v) according taF as in the proof of Theorem 3.2. After

cropping, by construction the load at each fac&atmains 5 Open Problems

at leastL/4. Apply Lemma 3.1 withU = F andS(v), Ideally we would like to prove stronger hardness results or
which yieldsQ(L/ In(nq./ L)) covers while the remainingfind better approximation algorithms in order to narrow the

sensors have load at ledst8 for any face ofA. O gap between our lower and upper bounds. In fact, we have
Remark. These results extend to convex shapes that adfdt ruled out the possibility of a PTAS for tiRESTRICTED
small cuttings: disks, ellipses, etc. STRIP COVER problem, although it cannot be in terms of
L. It would be interesting to see if other techniques for
4 Sensor Cover geometric optimization problems could be applied to our
Now consider the genereBENSOR COVER problem, in problem as well.
which eachR(-) is an arbitrary subset of a finite sét We are also interested in understanding preemptive
of size |U| = O(n). We show that a random schedulgchedules better. FARESTRICTED STRIP COVER, a sim-

of the sensors yields af(log n)-approximation with high ple algorithm based on maximum flow yields an optimal
probability. This result extends that of Feige et al. [6], whighreemptive schedule in polynomial time. In higher dimen-
deals with the unit-duration case. sions, however, it is not fully understood in which situations

Let T = cL/Inn, wherec is some constant to benon-preemptive schedules are sub-optimal when compared
determined later. We show that if we choose the start timéh the best preemptive schedules. For example, using es-
of each sensor randomly between 0 afdthen we will sentially the same argument as in the NP-hardness proof for
have a valid schedule with high probability. In order t&UBE COVER, we can show that its preemptive variant re-
avoid fringe effects, we must choose positions near 0 ains NP-hard. In general, we would like to uncover the
T judiciously. More precisely, for a senserof duration relationship between the load of the problem instance, the
d(s) < T, we choose its start timgs) uniformly at random duration of the optimal preemptive schedule, and the dura-
between—d(s) and T; if t(s) < 0, we reset it to 0. If tion of the optimal non-preemptive schedule.

d(s) = T, we simply seti(s) = 0. Divide T" evenly into  aAcknowledgements. We thank Nikhil Bansal for pointing
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dmin UNtil log(dmax/dmin) becomes small enough that we
A Details for Section 2 can apply Theorem 2.2 to the resulting rectangles.
A.1 Proof of Lemma 2.1 Given a seft” of unit-duration For ease of presentation, we assume that is an

sensors, all live at some fixegicoordinatez,, an integer integer. Letr denote the ratialyax/dmin. Assume first
group-duration paramet&, and a sufficiently small positivethatlogr > 1/¢, and sefu = ¢/logr and D = [p*diax ]
e, there is a set3 of groups, each of duratio®, such that Apply Steps (1)—(3) of Algorithm 1 t&, the set of sensors
for anyi, Lg(i) > Ly (i)/(1 4 €) — 4D[1/€]. of duration at mostl/ .. = [pD], with group durationD
and error parameter. This yields a set of rectanglés; of
Proof: It is convenient to view a sensor as a point durationD such that for any and some constant
(£(s),r(s)) in the plane. Note that all sensors livexgtare . & og(dJduin)
inside the rectangléz,, = {(z,y) : + < zo < y}. (See L (i) > TLSS(Z') —0 <7 max 08(@max/Emin )

Figure 3.) First we partition the sensors¥finto strips by 1 G
repeating the following as long as sensors remain. > 1 Le (i) — O(~i2doe. 1 5

(1) Create a vertical strip containing the at mosl /] T+p % () = Oy dmax log (17r))
sensors that remain with the smallésj values. 1 crvedd

2) Create a horizontal strip containing the at most > Ls, (i) - S ome

(2) Create a horizontal strip containing the at mos T+p S log

DJ[1/¢] sensors that remain with the larget) values.
Now for every vertical strip ofY’, take the sensors in Now considerG, as a set of sensors and the new
order of decreasing(-) value in groups of siz®. (We may problem instancé&’ = G, U (S '\ S;). Its load at is
discard the lask D sensors in the last strip.) Similarly, for
every horizontal strip, take the sensors in order of increasing Ls/(i) > L(i) 01762dmax.
£(+) value in groups of sizeD. (We may discard the last 14+p log r

< D sensors in the last strip.) Replace each grdap M h - durati £ thi bl .
with a larger rectanglesx with £(sx) — maxeex £(s), oreover, the new minimum duration of this problem in-

r(sx) = mineex 7(s), andd(sx) = 3oy d(s) = D. stance is at least, ., and tZle maxnl”numldlératlon r?(gnalns
. . T . . in e/ max __ log™r
Consider anyi < x, (the casei > z is symmetric), dmax, SOthenewratiois’ < frmas < -5 = =5~ <log™"r,

and examine Figure 3(c). All sensors liveiare inside the sincelogr > 1/e. Fore sufficiently small, we have’ < \/r;
rectangleR; = {(z,y) : « < i < y}. Assume that the line hencelog ' < logr.

x = i intersectss horizontal strips; the®; entirely contains Iterate the above procedure, each time using new error
at leastk — 1 vertical strips, saly (i) > (k — 1)D[1/e|. parameter’ = ¢/logr’, until it yields a problem instance
For any group completely insid®;, it contributesD to both S* with minimum durationd,;  for whichr* = dmax/d5
Ly (i) and Lg(4); for any group completely outsidB;, it is such thatlogr* < 1/e. Letrg,...,rp, = r* be the
does not contribute anything to eithBg (i) or Lo (i). So sequence of ratios antly(i) = L(i), L1(4),...,Lg(i) =
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Figure 3: [3] (a) Four sensors. (b) The sensors of (a) viewed ag) points. (c) Grouping a set of sensors with= 2

ande = 1/2. The rectangl&?,,, contains the set” of sensors. The sensors are first partitioned into alternating vertical and
horizontal strips ofD[1/€] = 4 each. Within each strip, the sensors are grouped (dotted lines) into grolps-ai. The
groups that intersect the line= i are shaded.

L*(4) be the sequence of loads. For some constant

. 1 . c17€2dmax
L@ > 1+¢/ logrk,lLk_l(Z) "~ log 1
1
- 1+e¢€/logri_1 x
1 L 1Y€ dmax
(1 +e/logri_a Li—2() = log r—2 ) a
01’762dmax
logri—1

> (Ii:[: (1 + 10;)) B L(i) —

k—
1
( ) 61762dmax
pae logr;

1 2
> —— L) — —— 2 dmax
1+ coe/logr* (@) e Gma

B log r*
> L(i)/(1 + 2co€?) — dc1ye dmax.

Let L* = min, Ls-(¢). Finally, apply Theorem 2.2 to
S*, which yields a schedule of duration at least

1 1 * 1
1% _0 ( Ydmaxlogr > 1—0 ( Ymax 7
1+e¢ €3 1+ cqe et

for some constant,. Replacing with ¢/c, gives the desired
result. a




