
Software for Simulating and Analyzing Markov Chains

Bellcore TM-ARH-020-376

Adam L. Buchsbaum1 Milena Mihail2

September, 1991

1Work conducted while the author was a summer student in the Mathematics, Information Sciences and
Operations Research Division. Author’s current address: Dept. of Computer Science, Princeton University,
Princeton, NJ 08544-2087.

2Bell Communications Research, Morristown, NJ.

Contents

1 Introduction 2
1.1 Overview of Random Processes . 2
1.2 What’s Counted . 3

2 File Formats 3
2.1 Graph Input File . 3
2.2 Data Output File . 3

3 Syntax 4

4 Graph Generation 4
4.1 Random Graphs . 4

4.1.1 Complete Graphs . 5
4.2 Hypercubes . 5
4.3 Tori . 5

5 Simulation 5
5.1 Random Walking . 5

5.1.1 Internal Buffer Flushing . 6
5.1.2 Caveat Rwalker . 6

5.2 Exhaustive Searching . 7
5.3 A Simple Monte Carlo Algorithm . 7

6 Analysis 7
6.1 Extracting Data . 7
6.2 Plotting Data . 8

6.2.1 Button Commands . 8
6.2.2 Keyboard Commands . 9

6.3 Calculating Convergence . 9

7 Examples 9

8 Handy Utilities 9
8.1 Binary Files . 10

8.1.1 Writing Them Manually . 10
8.1.2 Converting Them . 10
8.1.3 Fixing Them . 10

8.2 Setting Up Complete Graphs . 10
8.3 Flushing Rwalk’s Buffers . 11
8.4 Automated Graph Simulation . 11
8.5 Automated Plotting ... 11

8.5.1 ... of One Simulation . 11
8.5.2 ... of a Set of Simulations . 11

Appendix A — Summary of Command Line Arguments 12
Appendix B — Random Walks over Subgraphs of All Sizes 14

1

1 Introduction

Recent research into randomized algorithms has focused on the rate of convergence of various Monte
Carlo methods to the true values desired. In many circumstances however, theoretical conclusions
about the convergence rates of proposed algorithms either remain open or involve very sophisticated
techniques. For this reason, a package of software has been written to simulate various randomized
algorithms that follow a certain general outline. It is the hope that the results of these simulations
will help direct efforts toward devising theoretical bounds for the algorithms’ performance.

1.1 Overview of Random Processes

The rest of this report describes the software that was written to perform and analyze these simu-
lations. An initial overview of the random processes being simulated is first necessary, though. In
general, a random process will consist of a (probably large) state space (of size s) and a relation
that describes which states are reachable from any state in the space. At any time, the process will
be in a state and will randomly (uniformly among all the possibilities) choose an adjacent state to
which to move (or might stay in the current state). How many such random steps are necessary to
leave the process in any state with probability 1/s independent of the initial state measures the rate
of convergence, and it is this number that the simulation helps discover.

Since the state space will be prohibitively large, some implicit representation must be used.
Therefore, we model the random process in the following way. Consider a ground set E of ground
elements. The state space will be some family B ⊆ 2E . Any B ∈ B is a basis; thus, each basis
corresponds to a state, and moving from basis to basis will mimic the state transitions. There must
exist some efficient algorithm for testing whether or not B ∈ B without searching B explicitly (as
we assumed that B is too large to fit in main memory) and some practical way of moving from basis
to basis.

For example, let G = (V,E) be an undirected graph of n vertices and m edges. A subgraph
G′ = (V,E′), E′ ⊆ E is connected if and only if there exists a path (a series of adjacent edges, where
two edges are adjacent if they share a vertex) between any pair of vertices in G′. We wish to count
the number of connected subgraphs of some particular size of G. The ground set is precisely E,
the set of edges, and B is the set of connected subgraphs of the desired size of G. Whereas B is
too large to search to see if any subgraph B is a member, checking to see if B is connected and of
the correct size (and therefore a member of B) is straightforward and can be done in time linear in
the number of edges in B. It is interesting to note that while testing connectivity is a linear time
problem, calculating the number of connected subgraphs of G is complete for the class #P.

What is left is to describe how to move from basis to basis. A step consists of flipping a coin
and, if it turns up heads, making a move, otherwise staying in the current basis. Assuming that
a move is indeed to be made, it is effected by selecting uniformly at random an element from the
ground set and an element from the current basis and replacing the latter by the former. If the new
test-basis is indeed a basis, it becomes the new current basis; otherwise, the previous current basis
is restored. Pseudo-code for this follows:

comment B is the basis, E is the ground set
comment rndbit() returns 0 or 1, each with probability 1/2
comment rndelt() returns an element chosen unformly at random from a given set
if (rndbit() == 0) {

b := rndelt(B)
e := rndelt(E)
B := B\{b} ∪ {e}
if (B is no longer a basis)

B := B\{e} ∪ {b}
}

2

In our graph example, a move would entail removing an edge from the basis and replacing it
by an edge from the original graph. If the new test-basis is connected and of the correct size, it
becomes the new basis; otherwise, the old basis is restored. In this way, bases are “adjacent” if they
differ by one edge swap.

1.2 What’s Counted

After each move (or set of moves) the simulator checks the current basis to see which ground elements
are members of it, and it keeps a count of how many times each element has been present as well as
how many bases have been sampled (with multiplicity). At various stages this data is output, and
the user can thus see the progression over time of the ratio of number of bases (connected subgraphs
in our example) sampled containing a certain element (edge) to the total number of bases sampled.
The convergence of this ratio to its true value is a measure of the original convergence discussed
earlier.

For the rest of this report, we assume the application being simulated is the one from our example,
namely walking through the set of connected subgraphs of some graph. Indeed, the software is
currently configured for this application.

2 File Formats

This section describes the formats of the input and output files used by the software.

2.1 Graph Input File

The initial input file describes some graph, either generated by the user or by some other program
(see §4). This is a file of ASCII integers, the first of which is the number n of vertices in the graph.
After this number, the rest of the file consists of pairs of integers which denote which edges are
present. E.g. pair “2 3” says that there is an edge between vertices 2 and 3. Vertices are numbered
from 0 to n− 1. Since the graph is undirected, only one pair need be present for each edge; i.e. “3
2” need not be (and, in fact, must not be) present in the file if “2 3” is. White space in the file is
completely ignored except to separate integers.

For example, the following would be the contents of a file for the complete graph on 4 vertices:

4
0 1
0 2
0 3
1 2
1 3
2 3

Some of the programs refer to edges by numbers, in which case the edges are numbered, starting
at 0, in the order they appear in the input file.

2.2 Data Output File

The other file used by the programs serves as both an output file and an intermediate file; e.g. some
of the analysis programs read the output from the simulation programs. This is a binary file that
contains the data as described in §1.2.

The file starts with two integers, the number of vertices n and the number of edges m, respectively,
in the input file. These are passed along into the output file to save the programs that read it the

3

work it would take to calculate them or the user the responsibility of giving the numbers to those
programs.

Following these two numbers are “lines” of data. Each line contains an initial tag integer which
identifies which program wrote the data and possibly information about the sampling rate under
which the data was written. The tags will be fully explained in §5. Following the tag are m integers,
one per edge, giving the current counts (as of the particular sample) of occurrences of the respective
edges in the bases. The line then ends with one integer which is the count of bases sampled so far.

From this, one calculates that an output file containing data from s samples will consist of
2 + s(m + 2) integers.

3 Syntax

Most of the following sections describe component programs of the software. A word on syntax is
necessary to understand them. We use the standard UNIX1 syntax for describing the usage of a
command:

• Items in boldface are to be entered literally.

• Items in [square brackets] are optional.

• Items in {curly braces} separated by vertical bars (|) represent a set of possible entries, one of
which is to be used.

• Items in italics are further arguments to options.

• Items in typewriter style represent values to be substituted in the command line.

• Ellipses (...) denote zero or more additional arguments of the same type as what immediately
precedes them.

Optional arguments may appear in any order but must all occur before any required arguments;
required arguments must occur in the order in which they appear in the usage synopsis.

For example, the usage synopsis for a fictional command repeat which takes an optional argument
-n that changes the default number of repetitions to its own argument x and then repeats additional
command line entries that many times would be:

repeat [-nx] arg ...

The usage synopses and argument explanations for all the commands listed in the sections below
are summarized in Appendix A.

4 Graph Generation

In some cases the user will want to write a graph file manually (thus the reason for the ASCII format
of the graph files). However, in most situations s/he will likely want to create a number of graphs of
different sizes but of the same general structure; in these cases, s/he can easily write a program to
generate the graph files. The section describes three such programs provided by the package. They
all output the graph to standard output.

4.1 Random Graphs

The program gengraph will output a random graph with a given edge probability, i.e. the probability
that any edge will be present. Its usage is as follows:

gengraph [-c] [-emax] n numer denom

1UNIX is a Registered Trademark of AT&T Bell Laboratories.

4

It then constructs a graph of n nodes with edge probability numer
denom . If -c is specified, it ensures

that the resulting graph is connected (if the generated graph isn’t, the program will generate a new
one, repeating until a connected graph is constructed.) The -e option specifies the maximum number
of edges that the graph may have (the procedure here is similar to the case of -c.)

4.1.1 Complete Graphs

Note that no special program is required to generate a complete graph. To output a complete graph
on n vertices one issues the command

gengraph n 1 1

4.2 Hypercubes

A hypercube is a graph on 2k vertices for some value of k in which two vertices are adjacent (have
an edge between them) if and only if their vertex indices’ binary representations differ by only bit.
The command genhcube generates a hypercube and takes the value of k as its argument. Its usage
is thus:

genhcube k

4.3 Tori

A torus is a graph on n2 vertices for some value of n in which, if one thinks of the vertices laid out as
an n×n grid, two vertices are adjacent if and only if they are neighbors on the grid. For this purpose,
the vertices on either end of a grid row or column are neighbors; i.e. the grid “wraps around” in both
dimensions. One can picture a grid superimposed on a donut. The command gentorus generates a
torus and takes the value of n as its argument. Its usage is thus:

gentorus n

5 Simulation

The programs described in this section each take as input a graph file and produce as output a data
file containing the results of their simulations.

5.1 Random Walking

The main simulation tool is the program rwalk, which takes its name from its original purpose:
simulating a random walk on a very large graph. The large graph consists of a vertex for each
connected subgraph, two of which are adjacent if their respective subgraphs differ by one edge swap,
as explained previously. In effect, the random process simulates a traversal of this graph, its goal
being to finish at a uniformly random vertex independent of the start vertex; in effect, given an
initial connected subgraph, the process constructs a random one.

By default, rwalk uses minimum spanning trees (i.e. connected subgraphs of size m − 1) and
samples the basis separately every n, m, m2, and m3 steps for an n vertex m edge graph. The initial
basis is constructed via a breadth-first-search of the graph starting at vertex 0. Rwalk outputs a
data line every 10 samples, sampling 10000 times at each “rate.” Data lines are tagged 0, 1, 2, and
3, respectively, depending on the sampling rate.

The following options modify rwalk’s behavior:

-a Rather than walking over all connected subgraphs of a fixed size, walk over all connected
subgraphs. In this case, the algorithm of §1.1 is slightly modified to allow the removal and
addition of edges from/to the basis, as shown further in Appendix B.

5

-b Output data in binary format, as described above. The default ASCII output is meant only
for human interpretation for runs on small graphs.

-ctrue The true value of the ratio of bases containing a particular edge to all bases traversed is
true/1000. This is used in conjunction with the -e option.

-d Output copious debugging information to standard error. Not for the light of heart.

-eedge Collect and output data for this edge only. Run the program until the average relative error
(over all samples) of the calculated ratio for this edge against the true value (given via the -c
option) is less than one per cent (by default; see -r). The output file will contain 1 for the
value of m, and each line will contain only the tag, the count for the edge in question, and the
basis count.

-Eedge With -e, compare the ratios of the two given edges and run until the average relative error as
compared against the true value (again, as given by -c) falls under the threshhold (modified
by -r).

-ospo Change the default number of samples per output line to spo.

-pplus Add plus extra edges to the initial basis. Thus, unless -a is specified, the random walk will be
over connected subgraphs of size n− 1 + plus.

-raerr In conjunction with -c and -e (and possibly -E), run until the average relative error for samples
taken at each rate is less than aerr per cent.

-Rrate Do not output data for sampling rate rate (0 for n, 1 for m, 2 for m2, or 3 for m3). This is
particularly useful if given for rate 3, as it will speed the program by letting it stop after all
the samples for the finer rates are taken. One instance of this option may be given for each
rate.

-sa, b, c, d Take a samples at rate n, b at rate m, c at rate m2, and d at rate m3. Those values omitted
will be 0 (for n) or the previous given value (for the others); e.g. -s,1000,,50 will result in 0
samples at rate n, 1000 at rates m and m2, and 50 at rate m3.

-tmin Stop the program (if it hasn’t stopped already) after min minutes.

-u Rather than traverse the connected subgraphs, traverse the disconnected subgraphs. This
option implies subgraphs of all sizes. Its initial basis is the null basis.

Rwalk’s usage synopsis is thus:

rwalk [-a] [-b] [-ctrue] [-d] [-eedge] [-Eedge] [-ospo] [-pplus] [-raerr] [-Rrate] [-sa, b, c, d] [-tmin] [-u]

5.1.1 Internal Buffer Flushing

Rwalk buffers its output so that it won’t try to write an enormous amount of data in small pieces
at the beginning. Due to this buffering, if the system crashes during a run, whatever data has been
collected but not actually output will be lost. To avoid this, for long runs on an unreliable machine,
it is advisable to flush rwalk’s buffer forcibly every so often. One does this by sending a terminate
signal (SIGTERM) to the rwalk process. A script exists to do this periodically; see §8.3.

5.1.2 Caveat Rwalker

Rwalk was designed as a research tool, and its plethora of options is a result of the desire to simulate
random walks on graphs in a variety of modes (some of which were devised after building of the
software commenced). Some of the options are interdependent, e.g. the -c and -e options must be
given together, and the -r option is meaningless without the other two. Because of the profusion
of options, the program makes no attempt to ensure that the collection of options given on the
command line is in fact legitimate. If some needed options are left out (e.g. -e given but not -c),
rwalk’s behavior is undefined.

6

5.2 Exhaustive Searching

If the input graph is small enough, an exhaustive search can be performed to calculate the true ratios
for the graph. The program exhaust effects this search. It takes optional -b and -d arguments, both
of which have the same meaning as they do for rwalk. The final command line argument is the size
of the connected subgraphs to search exhaustively. Exhaust’s usage is:

exhaust [-b] [-d] size

Exhaust produces only one line of output data (after the vertex and edge counts), tagged with
a -1.

5.3 A Simple Monte Carlo Algorithm

The näıve Monte Carlo algorithm for random walks is to generate repeatedly subgraphs with edge
probability 1/2 and, if each in turn is connected, update the ratios appropriately. Why this algorithm
is not sufficient by itself is beyond the scope of this report. When the algorithm produces good data,
however, it is a useful comparison again rwalk.

The program monte implements this method and realizes the following options:

-b As for rwalk.

-d As for rwalk.

-eedge Generate ratios for the given edge only.

-ospo Output a data line every spo steps, default 1.

-pplus Generate random subgraphs of n−1+plus edges; the default is to generate random subgraphs
of all sizes.

-ssteps Run for steps steps, default 1000.

-u Maintain the ratios for disconnected subgraphs (of all sizes).

Its usage is

monte [-b] [-d] [-eedge] [-ospo] [-pplus] [-ssteps] [-u]

Monte tags its output lines with -3’s.

6 Analysis

The programs of §5 produce simulation data that must later be analyzed. Two programs are cur-
rently available to aide this process.

6.1 Extracting Data

The main quantity considered during the production of the software package was the ratio of the
number of times some edge appeared in a sampled basis to the total number of bases sampled. The
program extract synthesizes this information on a per edge per sampling rate basis from the input
data and produces it on its output in a form suitable for plotting (cf. §6.2).

Extract requires two command line arguments, the first of which is the edge desired, the second
of which is the sampling rate desired (the tag information produced by the simulation program). It
produces on its output a sequence of pairs of integers which correspond to (x, y)-coordinates on a
plot of the data being produced. The first number of each pair merely counts from 0 in increments
of 1 (the x-coordinate on the plot). The second number of each pair is n such that the ratio so far
of the number of times the edge has appeared in sampled bases to the number of bases sampled is
n/1000. The y-coordinates thus range from 0 through 1000.

7

Extract takes one optional argument, -etrue, which informs the program that the true ratio for
the edge being extracted is true

1000 . In this case, each y-coordinate is n such that the relative error of
the ratio at its sample to the true value is n/1000. Extract’s usage is

extract [-etrue] edge rate

6.2 Plotting Data

To plot the data from extract (cf. §6.1), a general X Window System2 plotting utility, xplot, was
built.

With no arguments, xplot takes as input a sequence of (x, y)-coordinate pairs of integers. It
produces an X window which contains the plot of the coordinates, successive coordinates connected
by lines unless a pair’s x-coordinate is less than the previous x-coordinate, in which case a new plot
begins (i.e. is overlaid atop the previous plot). Xplot automatically resizes and redraws the plot any
time the plot’s window is resized or reexposed.

Xplot’s usage is

xplot [-{c|C}cmd] [-ffont] [-gx, y] [-tfile] [-v]

and its arguments are as follows:

-ccmd After any plot’s window (cf. §6.2.1) is exposed, run the UNIX command cmd via the shell
(waiting for the cmd to exit unless it is put into the background). This is useful for invoking
commands that, for example, print the contents of a designated window, thus allowing some
mechanism for obtaining hard copies of plots.

-Ccmd Like -c, only exit xplot after cmd runs.

-ffont With the -t option, use font for the title font.

-gx, y Overlay a grid on the plot. Vertical grid lines occur every x ticks, and horizontal lines every y
ticks. If either is missing or 0, no lines in the respective orientation will be generated; if x is
missing, a comma (,) must still precede y. See §6.2.2 to change the grid interactively.

-tfile Prints the contents of file at the upper left of the plot.

-v Give verbose output in the command window as to what xplot is doing.

6.2.1 Button Commands

In this and the following sections, current point refers to the xplot screen coordinate of the mouse
over the current plot, that plot which has most recently been exposed. Xplot responds to mouse
button clicks as follows:

1. Clicking button 1 once at any two locations on the current plot will cause xplot to produce a
new plot (in a new window) of the region of the current plot between the x-coordinates of the
points over which the mouse sat during the button clicks. Whatever grid and title were on the
old plot will be placed on the new plot at well. This option is useful for zooming in on small
areas of a plot. It only functions properly for “simple” plots, i.e. those which have no overlaid
sections.

2. Clicking button 2 will cause xplot to output to its command window the sample number and
y-coordinate of the current point.

3. Clicking button 3 will cause xplot to destroy the current plot. If this was the original plot,
xplot itself will exit (destroying any other plots as well).

2X Window System is a Trademark of the Massachusetts Institute of Technology.

8

6.2.2 Keyboard Commands

Xplot also accepts one keyboard command in any plot window. This is the g command, entered as
follows:

gx, y

It causes the grid over the particular plot to be redrawn as per the parameters given. The
meaning of those parameters is the same as for the -g argument to xplot.

6.3 Calculating Convergence

The program arerr takes as input a data file and calculates at which sample each rate for which
data is presented converged to some specified value. Its usage is

arerr edge realval goal1 . . . goaln

Edge is the edge for which the convergence data is to be collected; realval is the true value of
the ratio for this edge. The goal arguments (given in per cent) must be given in decreasing order.
Arerr will then determine and print a summary of the samples at which each rate achieved each
goal.

7 Examples

Here we give two examples for using the above programs. The first will perform a random walk on
a graph in graphfile of 1000 samples at sampling rate m, outputting data every sample. Assuming
the graph has six vertices, the random walk will be over spanning trees (connected subgraphs of five
edges). It will then perform a similar näıve Monte Carlo simulation and compare the results of each
for edge 0 (note some of the command line options are unnecessary, as they simply pass the default
parameters):

rwalk -b -R0 -R2 -R3 -s1000 -o1 <graphfile >rwalk.data
monte -b -s1000 -o1 -p5 <graphfile >monte.data
(extract 0 1 <rwalk.data ; extract 0 -3 <monte.data) | xplot

The second example will run a random walk on the same graph but for connected subgraphs of
size eight and only for edge 3, whose true ratio is known to be 767/1000; it will execute the random
walk, outputting data every five samples, until the average relative error of all the samples is below
two per cent and then plot the results for sampling rate m2:

rwalk -b -c767 -e3 -o5 -p3 -r2 <graphfile | extract -e767 0 2 | xplot

Note that the edge argument to extract is 0 and not 3; this is because rwalk run with the -e flag
produces output for only the one edge, and thus as far as extract is concerned, there is only one
edge, number zero, in the graph.

8 Handy Utilities

This section describes some smaller programs and shell scripts contained by the package. They were
written to implement some of the more repetitive tasks involved in simulating large sets of graphs.
Those utilities implemented as shell scripts have a colon (:) as the first character of their names.
Some shell scripts have variable definitions towards the beginning instructing them whence to read
graph files and where to put data files.

9

8.1 Binary Files

The simulation programs of §5 write binary data files as output. The three programs described here
deal with these files on a lower level than that of data generation and analysis.

8.1.1 Writing Them Manually

It is occasionally desirable to write a binary data file manually, without aid of one of the simulators.
For example, a regularly structured graph (such as a complete graph, torus, or hypercube) might
have well known edge-occurrence-to-sampled-bases ratios for all sizes of connected subgraphs. An
“output file” for these correct values can be written by hand to be used by some of the automated
analysis tools of §8.5. The program bwrite takes as input a list of white-space-separated integers
and writes them in binary format to its output.

8.1.2 Converting Them

Sometimes a lot of simulations will be run simultaneously, one or two each on a different machine.
Some of these machines may have different byte orders; e.g. machines made by Digital Equipment
Corporation have reverse byte order compared to those of Sun Microsystems. The program cvt reads
a binary data file on standard input and reverses the byte order of each 32-bit word, writing the
updated data to standard output.

8.1.3 Fixing Them

Experience with running long simulations provides anecdotal evidence that, when the output files
actually reside on another machine (via a network file system), the likelihood is significant that a
few data samples might be lost or garbled. (This may, of course, simply be a symptom of the actual
network used for the trials.) To cope with this unpleasantness there exists a program fixdata which
attempts to massage partially garbled data files by removing problem samples. Its takes a data file
on input and writes a cleaned version to its output, its usage being:

fixdata [-rrate] ... [-sskip] ...

The -rrate argument tells fixdata that rate is present as a tag in the data file (more than one such
argument can be given); the -sskip argument tells fixdata to remove sample skip (counting from 0).
The latter argument might be used in the case where xplot reveals a spurious sample (a large spike,
e.g.) whose sample number can be isolated by zooming in and using button 2 (cf. §6.2.1.)

Fixdata works by reading samples from the input and checking to ensure that each tag is valid.
Upon detecting an invalid tag, the program searches for a valid tag starting at the next integer after
the bad tag, throwing out integers until it discovers a valid tag. Usually, fixdata is invoked twice:
once with a set of -r options to remove garbaged samples and then again, after an xplot, to remove
any data spikes that may have been introduced. This scheme is of course not the only one possible,
but its simplicity and observed ability to cope with the type of data failures encountered make it
palatable. Fixdata prints informative messages about its actions to the standard error output.

8.2 Setting Up Complete Graphs

The script :Kwrite prepares data files for a complete graph. Its usage is

:Kwrite n

where n is the number of vertices in the graph. :Kwrite constructs data files with basenames (file
names in the data directory, as defined in the script) “pe,” where p ∈ [0..m− n] (m = n(n− 1)/2 is
the number of edges) is the number of extra edges (above n − 1, the number needed for minimum
spanning trees) in the graph represented by that data file. The data files each contain one line of
data, tagged by -1 (like those output by exhaust — cf. §5.2), which represents the true ratio values
for each edge.

10

8.3 Flushing Rwalk’s Buffers

As mentioned in §5.1.1, upon receiving the SIGTERM signal, rwalk flushes its output buffers. The
script :doflush has usage

:doflush pid

and sends the SIGTERM signal to process pid (assumed to be an rwalk process) every fifteen minutes.
The motivation behind this method of periodic flushing is twofold: (1) Any periodic flushing method
will entail the use of some signal, either sent from the outside (as in the current method) or generated
internally by rwalk (e.g. a SIGALRM alarm signal); (2) a script is used to send the SIGTERM signals
periodically rather than having rwalk realize another command line argument for this purpose to
allow the user total freedom over the frequency of flushing (e.g. irregular flushing intervals might be
desired, making implementation of flushing via command line argument impractical.)

8.4 Automated Graph Simulation

The script :dograph runs an rwalk simulation on an input graph for each valid subgraph size. Its
usage is

dograph [-e] arch graph rwalk-opts ...

Arch is the machine architecture (e.g. vax3, sun3, etc.) under which rwalk is running, graph is the
basename of the graph file, and rwalk-opts are additional options for each rwalk command. :Dograph
runs an rwalk command for each valid subgraph size (from n−1 through m−1), putting the output
of each walk in a data file of basename “pr,” where p is as in §8.2. If the -e option is given, :dograph
also runs exhaust on the input graph for each valid subgraph size, putting the output in data files
of basename “pe.”

8.5 Automated Plotting ...

Once a graph has been simulated, two methods of automated plotting are available.

8.5.1 ... of One Simulation

:Doplot expects the pr and pe files described in §8.2,8.4 to exist. Its usage is

:doplot [-p] graph plus rate {b|w}
where graph is the basename of the graph input file, plus is the number of additional edges of the
desired simulation’s subgraph size, and rate is the sampling rate from which the data is to be taken.
The final argument instructs :doplot to plot the data for the best/worst edge (that edge with the
best/worst relative error to the true ratio value). :Doplot calculates which edge to plot and then
invokes xplot (cf. §6.2) to plot the relative error of the selected edge. Given the -p option, :doplot
invokes xplot with a command line argument that causes a window printing program to run after
the plot is exposed, allowing the user to obtain a hard copy of the plot.

8.5.2 ... of a Set of Simulations

Built around :doplot (cf. §8.5.1), :exgraph plots data for a number of different subgraph sizes. Its
usage is

:exgraph graph

where graph is the basename of the graph input file. :Exgraph invokes :doplot to plot the best edge
from the simulation of subgraph size n − 1 and the worst edges from the simulations of subgraph
sizes n− 1 + (i ∗ d) where d = (m− n)/4 and i ∈ [1..3]. It does this for each sampling rate of rwalk;
thus, :exgraph generates a total of sixteen plots. :Doplot is called with the -p option, so that hard
copies of these plots can be produced.

3VAX is a Trademark of the Digital Equipment Corporation

11

Appendix A — Summary of Command Line Arguments

A table explaining the command line arguments to all of the programs described herein follows. The
“Section” column indicates in which section the command is fully documented; an asterisk (*) in the
“Opt” column indicates that the designated argument is optional. Optional arguments may appear
in any order but must all occur before any required arguments; required arguments must occur in
the order in which they appear in the usage synopsis.

12

Command Section Arg Opt Meaning
gengraph §4.1 -c * Require graph to be connected

-emax * Allow no more than max edges in graph
n Construct graph of n vertices
numer Use edge probability ...
denom ... numer

denom

genhcube §4.2 k Construct hypercube of 2k vertices
gentorus §4.3 n Construct torus of n2 vertices
rwalk §5.1 -a * Simulate over all subgraph sizes

-b * Output data in binary format
-ctrue * With -e, true ratio for edge is true/1000
-d * Output lots of debugging information to stderr
-eedge * Collect and output data only for edge edge
-Eedge * With -e, compare ratios of the two given edges
-ospo * Output one data line every spo samples
-pplus * Construct initial basis of size n− 1 + plus
-raerr * With -c and -e, run until average relative error is less than aerr%
-Rrate * Don’t output data for sampling rate rate
-sa, b, c, d * Take a samples at sampling rate n, etc.
-tmin * Stop simulation after min minutes
-u * Traverse disconnected subgraphs; implies -a

exhaust §5.2 -b * Output data in binary format
-d * Output lots of debugging information to stderr
size Run over subgraphs of size edges

monte §5.3 -b * Output data in binary format
-d * Output lots of debugging information to stderr
-eedge * Generate ratios for given edge only
-ospo * Output one data line every spo samples
-pplus * Generate random subgraphs of n− 1 + plus edges (all sizes by default)
-ssteps * Run for steps steps
-u * Maintain ratios for disconnected subgraphs of all sizes

extract §6.1 -etrue * The true ratio for the edge is true/1000
edge Extract data for edge edge
rate Extract data for sampling rate rate

xplot §6.2 -ccmd * Run cmd via the shell after exposing each plot
-Ccmd * Like -c, but exit after running the command
-ffont * Print title in font
-gx, y * Overlay a grid every x x-ticks and y y-ticks
-tfile * Print contents of file as a plot title
-v * Give verbose output as to program’s actions

arerr §6.3 edge Edge for which to calculate convergence
realval Real value for this edge
goal . . . Successive convergence goals

bwrite §8.1.1 NO ARGUMENTS
cvt §8.1.2 NO ARGUMENTS
fixdata §8.1.3 -rrate * Expect sampling rate rate in data file

-sskip * Skip sample skip
:Kwrite §8.2 n Generate true data files for Kn

:doflush §8.3 pid Periodically flush rwalk process pid’s buffers
:dograph §8.4 -e * Also run exhaust on input graph

arch Rwalk running on machine with architecture arch
graph Basename of input graph file
rwalk-opts Any additional arguments to rwalk (may be empty)

:doplot §8.5.1 -p * Run xplot with argument to print plots
graph Basename of input graph file
plus Plot selected edge for simulation of (n− 1 + plus)-edge subgraphs
rate Plot selected edge for sampling rate rate
b|w Select edge with best/worst relative error to true ratio value

:exgraph §8.5.2 graph Basename of input graph file

13

Appendix B — Random Walks over Subgraphs of All Sizes

The -a and -u options to rwalk cause the program to simulate a random walk over subgraphs of all
sizes. In this case, the general procedure of §1.1 must be slightly modified to allow the basis to grow
and shrink at each move. To effect this, the ground set and basis each contain a dummy element.
Let B be the randomly selected basis element and G the randomly selected ground element of any
move. If G but not B is the dummy element (and the newly constructed test-basis is a valid basis)
then the basis shrinks by one element; if B but not G is the dummy element then the basis grows;
if neither B nor G is the dummy element then the basis remains the same size; if both B and G are
dummy elements then no move takes place.

The pseudo-code of §1.1 remains the same if one considers the dummy element to be the null
member of any set.

14

