
Enterprise Navigator: A System for Visualizing and
Analyzing Software Infrastructures

A. Buchsbaum, Y. Chen, H. Huang, E. Koutsofios, J. Mocenigo, A. Rogers
AT&T Labs – Research, Florham Park, New Jersey, USA

M. Jankowsky
AT&T Network Services, Middletown, New Jersey, USA

S. Mancoridis
Drexel University, Philadelphia, Pennsylvania, USA

Abstract

Operations of today’s large corporations are usually supported by complex software
infrastructures that involve hundreds or thousands of software systems. Companies frequently
need to redesign their software infrastructures in response to changes in the marketplace. This
paper describes Enterprise Navigator, a system that allows architects to visualize system
interconnections of selected products and services by making database queries on the web.
Moreover, analysis tools are provided for the architects to examine dominating information flows,
perform clustering analysis to find substructures, and study the structural evolution of particular
business processes or functions. The system has been used extensively on AT&T’s System
Profile Database (SPDB). A case study is included in this paper to show how an architect can use
Enterprise Navigator to perform various visualization and analysis tasks.

Keywords: Enterprise Database, Software Infrastructure, Database Visualization, Software
Architecture, Dominator, Clustering, Java, JDBC, World Wide Web.

1. Motivation

Operations of today’s large corporations are usually supported by complex software
infrastructures. Thousands of software systems and interfaces support AT&T’s array of
telecommunications services and products. Each interface serves as a conduit for data to
flow between one system and another system or entity (network element, work center,
organization, database, etc.). Typical business processes include account maintenance,
billi ng, customer care, capacity management, financial management, marketing, and
ordering & provisioning. A software system may support multiple products, services,
and business processes. Likewise, every product, service, or business process may
involve many cooperating software systems, exchanging data through the system
interfaces.

Figure 1. A Typical System Interface Diagram Generated by Enterprise Navigator

Companies frequently need to redesign their software infrastructures in response to
changes in the marketplace. Such business reengineering activities must be performed
with care, however, so that the new architecture will not disrupt existing operations or

increase the operating cost in unnecessary ways. To support these goals, system
architects have long recognized the need to collect information about all systems and
interfaces in a repository. Architects use this information to draw system interface
diagrams manually in order to help them study the existing architecture. Theses
diagrams are updated, published annually, and distributed throughout the business units.

The process of manually drawing system interface diagrams is tedious and error-prone: a
simple system interface diagram that shows all system interconnections to a single system
could take 30 minutes or more to draw, and the diagram often becomes obsolete before it
is published. Moreover, it is not easy, through the draw-and-publish mechanism, to get a
system interface diagram based on an ad-hoc query. For example, a manger in charge of
reengineering of billi ng operations may want to generate a diagram that involves all
systems that perform bill calculations under a particular product or service offer.

This paper describes Enterprise Navigator, a system we have built to allow users to
specify and execute ad-hoc queries and generate a system interface diagram
automatically. For example, Figure 1 shows a typical diagram generated by Enterprise
Navigator for a particular ad-hoc query.1 Each node represents a system, and each link
represents an interface between the two connected systems. Moreover, Enterprise
Navigator allows users to (a) study architecture evolution of a system interface diagram
over time, (b) perform clustering analysis to find substructures embedded in complex
diagrams and (c) perform dominator analysis to determine systems that dominate
information flows. Enterprise Navigator can run as a collection of stand-alone tools
using a set of database visualization tools called CIAO [1], or as an integrated web
service, on which we will focus in this paper.

Our work builds on established research in source code analysis, graph drawing, and
reverse engineering. Acacia [2] and Chava [3] are examples of reverse engineering tools
for the analysis of C/C++ and Java programs, respectively. In these systems, source-
code analysis results are stored in a database so that ad-hoc queries can be used to extract
software structure information without relying on customized parsers. Visualization tools
that employ automatic graph-drawing algorithms [4][5] are frequently employed to help
software engineers comprehend the results of their analyses. Many reverse engineering
techniques, including techniques for software clustering [6] and dominator analysis [7],
have underpinnings based on optimization theory, statistics, and graph theory.

To date, the aforementioned techniques and tools have been applied mainly to individual
software systems written in a variety of programming languages. The work described in
this paper takes the next step by showing how the entire software infrastructure of a large
enterprise such as AT&T can be modeled, queried, analyzed, and visualized when the
infrastructure information is available in a database.

The rest of the paper is organized as foll ows. Sect ion 2 descr ibes the
archi tecture of this system. Sect ion 3 shows how a user interacts with the

1 All real system names have been replaced by randomly generated names, and certain interface names are
not shown in this diagram to protect proprietary information.

Enterpr ise Navigator using a case study. Sect ion 4 concludes with summary
and a discussion of future work.

 2. Arch ite ctu re of th e En te rprise Navigator

Software
Infra-

structure
Database

Threaded
Java

Server
Appli cat ion

Java
Client

Display
Applet

Graph
Manipulat ion

Programs

JDBC
Connect ion

Socket
Connect ion

Pipes

Figure 2. Enterprise Navigator Architecture

Figure 2 presents a high-level view of the architecture of the Enterprise Navigator. End-
users interact with the Enterprise Navigator by means of a Java applet (see Fig. 5). The
applet establishes a two-way socket connection to a Java application running on a server
machine. The Java application communicates via a JDBC (Java Data Base
Connectivity)2 connection with a database of software infrastructure specifics. End-user
visualization requests are passed to the server application, which formulates an SQL
query to retrieve the necessary information from the database. The server application then
constructs a system interface graph and opens a connection to a graph layout program to
position the elements of the graph automatically. When the layout is complete, the graph
is sent using Java object serialization to the applet, which creates a visualization window
and displays the requested system interface diagram to the end-user (see Fig. 7). Nodes
and edges can be selected to view their attributes, the graph display can be altered based
on those attributes, and the graph can be returned to the server for additional processing
by graph clustering or graph dominator algorithms.

The glue holding the Enterprise Navigator together is the Java application on the server
machine. The components of the Enterprise Navigator linked by the server application
are described in more detail below. Those components are the

• infrastructure database, System Profile Database (SPDB) (Section 2.1),
• graph manipulation and display tool, Grappa (Section 2.2),
• graph clustering tool, Bunch (Section 2.3), and
• graph dominator tool, Dominator (Section 2.4).

2 Visit http://java.sun.com/products/jdbc for more information on JDBC.

2.1 System Profile Database (SPDB)

The underlying database supplying the Enterprise Navigator is the System Profile
Database (SPDB), which contains key information about all system entities and interfaces
within the enterprise of interest. The three most important tables are the following.

• The System table contains basic information about each system in the entire business
enterprise. It also includes such entities as work centers, network elements,
databases, and web sites as well as external systems that participate in flows of data to
or from systems within the enterprise. Information about a system can include system
type, system name, system owner, business unit owner, system status, phase in/out
dates, Y2K status, and its parent system.

• The Interface table gives information about flows between systems and other entities
described in the System table. Information about an interface can include interface
type, the “from” system, the “to” system, interface owner, business unit owner,
transmission media, transmission frequency, transmission mode and interface status.

• The Mapping table links other entities such as products and services or business
functions to systems in the System table.

In constructing a system interface diagram, the Enterprise Navigator constructs a graph of
the components setting the systems as nodes and the interfaces between them as edges.
Additional pieces of information about those entities are stored as attributes to the graph
elements.

2.2 Graph Manipulation and Display (Grappa)
Graph manipulation and display in the Enterprise Navigator is handled by a Java package
called Grappa [7], which is freely available on the web.3 Grappa is used in the Enterprise
Navigator both in the client applet and in the server application. Grappa can be used to
build and manipulate a graph independent of display considerations. Although Grappa
does not contain layout algorithms, it has methods for simpli fying communication with
graph layout programs, particularly the dot layout program [5].3

Mouse interactions with the nodes and edges displayed by Grappa can cause additional
actions to be triggered. In the Enterprise Navigator, these actions include triggering a
new query specific to a selected element, and viewing or storing additional data about an
element. Moreover, to study architecture evolution over time, the applet could be set up
to color systems according to a reference date and the status of each system at that date.
Those that have been phased out of service or yet to be introduced are colored differently
from those of active systems. Visualization of these changes helps architects determine
the effects of business reengineering on various products and services.

Grappa is designed to be extensible. The next two sub-sections describe two applications
that were integrated into the Enterprise Navigator without re-coding. The server
application acts as a bridge between those applications and the display applet.

3 Grappa and dot can be downloaded from http://www.research.att.com/sw/tools/graphviz/

2.3 Graph Clustering (Bunch)

The Enterprise Navigator uses the Bunch [8] tool to provide a means of clustering
components in the system interface diagrams. Clustering is particularly useful to system
architects who are trying to understand large and complex software infrastructures from
their graph representation.

Bunch accepts, as input, a graph and produces, as output, a partitioned version of the
input graph into a set of non-overlapping groups (clusters) of nodes. Using Grappa, a
partitioned system interface diagram can be shown as a graph with clusters of nodes
enclosed in rectangles. The Java server application communicates with Bunch through an
application program interface.

The objective of Bunch is to partition the software graph so that system entities (nodes)
in the same cluster are more closely related and system entities in different clusters are
relatively independent of each other. Creating a meaningful partition of a system
interface diagram, however, is diff icult because the number of possible partitions is very
large even for a small graph. Also, small differences between two partitions can yield
very different results. As an example, consider Figure 3a, which presents a graph with a
small number of entities and relationships. The two partitions of the graph presented in
3b and 3c are very similar, with only two nodes (M3 and M4) swapped. In spite of this
seemingly small difference, the partition defined in Figure 3c better captures the high-
level structure of the graph, since it groups nodes that are more inter-dependent.

Bunch treats graph clustering as an optimization problem, where the goal is to maximize
an objective function that favors the creation of clusters that exhibit a high degree of
intra-edges. Intra-edges are edges between the nodes of the same cluster. The same

function penalizes pairs of clusters that exhibit a high degree of inter-edges. Inter-edges
are edges between nodes that belong to different clusters. A high degree of inter-edges is
an indication of poor partitioning. Having a large number of inter-edges complicates
software maintenance because changes to a software system may affect other systems of
the software infrastructure. A low degree of inter-edges is a desirable trait of a system
architecture and is an indicator that the individual clusters are, to a large extent,
independent. Therefore, changes applied to a software system are likely to be localized to
its cluster, which reduces the likelihood of introducing errors into other systems.

2.4 Graph Dominators (Dominator)
The Enterprise Navigator uses the Dominator tool to provide a means of determining the
dominators of a graph. In a graph with a selected root node R, node X dominates node Y
if every path from R to Y goes through X. We explain dominators with an example.
When the Enterprise Navigator generates a system interface diagram, each interface link
between systems represent information flows. For example, in Figure 4a, the link from A
to B means that information flows from A to B. The dominator tree derived from our
infrastructure graph is shown in Figure 4b. A link in the dominator tree between two
nodes means that any flow of information from the root node (selected from the original
graph) to the target node must flow through the source of the link. For example, if A is
the source node and there is a dominator link from B to C, then there is no way to get
from A to C without going through B. In other words, if B were to be removed, C would
be cut off from any information derived by A. On the other hand, consider the links from
D to E and A to E in the original graph. The direct link from A to E provides a way to
get to E from A without going through D; therefore D is not a dominator of E. In fact, A
is the sole dominator of E.

 Figure 4a. A System Interface Graph Figure 4b. Its Dominator Tree

The root node of a dominator tree represents the system where the flow of information
logically begins. In cases where a single root is not available, multiple roots can be
chosen from the graph to act together as the global information source.

Our tool uses the dominators algorithm devised by Lengauer and Tarjan [5]. Buchsbaum
et. al [6] provide a history of dominators algorithms as well as theoretical improvements
to the Lengauer-Tarjan algorithm. Examples of applications for dominator trees in the
Enterprise Navigator include the following.

System evolution sanity checks: Removing a system disconnects all systems dominated
by it (and by extension systems dominated from those, and so on) from the original

information source. Therefore, systems that are scheduled to be retired should not
dominate any systems that are not being retired. The Enterprise Navigator allows this
situation to be checked visually by uniquely coloring systems to be retired on a dominator
diagarm.

Qualitative assessments of dependency complexity: Dominator trees that are flat, i.e.,
in which many systems are directly connected to the root(s), can represent highly
interconnected systems, because there are few systems whose removal disconnects the
graph. Such high interconnectivity can be good due to replicated resources for system
dependabili ty, or bad due to unnecessary or duplicated information flows. On the other
hand, dominator trees that are deep, i.e., in which many systems are far from the root(s),
can represent less connected systems because many systems criti cally depend on many
others for connectivity from the root. Again, this may be good or bad, depending on the
application.

3. Case Stu dy

To ill ustrate various functions of the Enterprise Navigator, this section shows how a user
can construct queries, generate system interface diagrams, perform clustering analysis,
and run the dominator tool, all through a web interface.

Figure 5 shows our query interface presented by the Java applet. The interface allows
users to select systems from different business units, owners (directors),
products/services, business functions, and so on before generating a system interface
diagram. The parameters selected by users in some categories determine what choices are
available in other categories. For example, when a user clicks the Browse button next to
the Business Unit category, the list of all business units appears. If the user chooses
iHome4 and then clicks on the Browse button next to the Product/Service item in Figure
5, Figure 6b will appear and show all products and services under the iHome business
unit only. If the user selects iPhone and browses the systems under that service, then the
list of systems appears (Figure 6c). The user can refine the query further by setting the
value of Business Process and/or Business Function, etc.

The user is free to pick any system from the list to generate a system interface diagram.
Figure 7 shows a typical diagram centered around the system HLJ. The picture clearly
shows that HLJ collects routing and rating data and then distributes reference data
(among other things) to quite a few systems.

4 All business unit names, product names, and system names have been replaced with imaginary names to
protect proprietary information.

Figure 5. Query Interface of the Enterprise Navigator

Figure 6. Lists of (a) Business Units (b) Products and Services under iHOME (c)
Systems under iHOME that are involved with the iPhone service.

Figure 7. System Interface Diagram of HLJ

In every system interface diagram, each node can be colored according to different
attributes of the system. In Figure 7, we use the status shading scheme, in which a beige
node indicates an active system and a gray node indicates that we have insufficient
information about that system. Using the reference date (1999-11-23) shown in the
query interface page (Figure 5), a cyan node indicates that this system is planned and will
be introduced soon and a purple node indicates that this system has retired. As it is
important to know how a business reengineering plan affects the system architecture, a
system architect can use different reference dates to see how the system interface diagram
of a particular product or service has evolved or will become. Another shading scheme is
Y2K shading, in which case nodes are colored according to whether they are Y2K-
compliant or not. This scheme allows us to verify the Y2K readiness of any particular
product or service quickly if the Y2K compliance data are available.

Instead of selecting a single system, a user can simply choose to generate a system
interface diagram for all systems involved in a product or service (or any systems that
satisfy a particular query), as shown in Figure 1. If the user would like to discover
clusters of systems embedded in such a complex structure, she can invoke the Bunch tool
to convert the diagram to a clustering diagram as shown in Figure 8a. The diagram
shows that there are two clusters with a similar architectural pattern: all clusters have a
data hub (within that cluster) that receives data from several sources and distributes

processed data to many other destinations.5 It’s not always easy to identify clusters from
complex system interface diagrams.

If a user is interested in discovering the dominating information flows starting from a
particular system, she can select the node and perform a dominator analysis.
Alternatively, our tool can perform topological sorting to rank the nodes and add a virtual
root to all the top-level nodes before starting the dominator analysis. Figure 8b shows a
dominator tree created for the system interface diagram of Figure 1 with this method. It
is clear that any attempt to remove the system HLJ will im pact all the other systems that
it dominates since any information flows to the product or service represented by Figure
1 will have to go through HLJ. Such information can help system architects plan their
reengineering efforts.

4. Summary and Future Work

Enterprise Navigator is a system that allows software architects to visualize and analyze
the software infrastructures of AT&T. Besides automating the process of drawing system
interface diagrams, it adopts the latest Internet technologies to allow users to make ad-
hoc queries from anywhere in the company and obtain the corresponding system interface
diagrams in real time. Moreover, the architecture of the Enterprise Navigator allows easy
integration of external layout and analysis components such as the Dominator and the
Bunch clustering tools. These tools have helped us understand the information flows and
substructures inside a complex system interface diagram.

The usefulness of the Enterprise Navigator depends heavily on the timeliness of the
underlying data. We are working on faciliti es that would allow architects to update the
architecture data directly from the graphs to eliminate the delays associated with the old
data collection process. We also plan to add node and link operators that would allow
users to examine the corresponding systems and data transmitted on a link in more detail .
With the addition of operational data like system availabili ty to the database, we might be
able to perform end-to-end enterprise architecture simulations. Finally, we welcome the
opportunity to apply the concept of Enterprise Navigator to other forms of enterprise data
or data from other companies.

5 Figure 7 also shows a typical cluster following that pattern.

Figure 8 (a) Clustering Diagram and (b) Dominator Diagram generated from the
System Interface Diagram in Figure 1

References

[1] Y. Chen, G. Fowler, E. Koutsofios, and R. Wallach, Ciao: A Graphical Navigator for
Software and Document Repositories, Proceedings of the International Conference on Software
Maintenance, Nice, France, pp. 66-75, Oct. 1995.

[2] Y. Chen and E. R. Gansner and E. Koutsofios, A C++ Data Model Supporting
Reachability Analysis and Dead Code Detection, IEEE Transactions on Software Engineering,
24(9), September 1998, pp. 682-693. Also appeared in Proceedings of the Sixth European
Software Engineering Conference and Fifth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Zurich, Switzerland, September, 1997.

[3] J. Korn and Y. Chen and E. Koutsofios, Chava: Reverse Engineering and Tracking of
Java Applets, Proceedings of the 6th Working Conference on Reverse Engineering, 1999.

[4] G. Di Battista, P. Eades, R. Tamassia, I. Tollis, Graph Drawing: Algorithms for the
Visualization of Graphs, Prentice Hall, 1999.

[5] E. R. Gansner and E. Koutsofios and S. C. North and K. Vo, A Technique for Drawing
Directed Graphs, IEEE Transactions on Software Engineering, 19(3), pp. 214-230,1993.

[6] T. Lengauer and R. E. Tarjan, A Fast Algorithm for Finding Dominators in a Flowgraph,
ACM Transactions on Programming Languages and Systems, 1(1), pp. 121-141, 1979.

[7] N. Barghouti, J. Mocenigo, and W. Lee, Grappa: A Graph Package in Java,
Proceedings of the Fifth International Symposium on Graph Drawing, Rome, Italy, pp. 336-343,
Sep. 1997.

[8] S. Mancoridis, B. S. Mitchell, Y. Chen, E. R. Gansner , Bunch: A Clustering Tool for the
Recovery and Maintenance of Software System Structures, IEEE Proceedings of the International
Conference on Software Maintenance (ICSM'99), Oxford, UK, August, 1999.

[9] A. L. Buchsbaum and H. Kaplan and A. Rogers and J. R. Westbrook, A New, Simpler
Linear-Time Dominators Algorithm, ACM Transactions on Programming Languages and
Systems, 20(6), pp. 1265-1296, 1998.

