Enterprise Navigator: A System for Visualizing and
Analyzing Softwar e I nfrastructures

A. Buchsbaum, Y. Chen, H. Huang, E. Koutsofios, J. Mocenigo, A. Rogers
AT&T Labs— Reseach, Florham Park, New Jersey, USA

M. Jankowsky
AT&T Network Services, Middetown, New Jersey, USA

S. Mancoridis
Drexel University, Phil adel phia, Pennsylvania, USA

Abstract

Operations of today’s large rporations are usuadly suppated by complex software
infrastructures that involve hundeds or thousands of software systems. Companies frequently
neel to redesign their software infrastructures in resporse to changes in the marketplace This
paper describes Enterprise Navigator, a system that allows architects to visualize system
interconnections of selected products and services by making database queries on the web.
Moreover, analysis tools are provided for the architeds to examine dominating information flows,
perform clustering analysis to find substructures, and study the structura evolution of particular
business processes or functions. The system has been used extensively on AT&T's System
Profil e Database (SFDB). A case study isincluded in this paper to show how an architect can use
Enterprise Navigator to perform various visuali zation and analysis tasks.

Keywords: Enterprise Database, Software Infrastructure, Database Visualization, Software
Architecture, Dominator, Clustering, Java, JDBC, World Wide Web.

1. Motivation

Operations of today’s large @rporations are usualy supported by complex software
infrastructures. Thousands of software systems and interfaces support AT&T'’s array of
telecommunicaions rvices and products. Ead interface serves as a wndut for data to
flow between ore system and ancther system or entity (network element, work center,
organization, chtabase, etc.). Typica business processes include account maintenance,
billi ng, customer care, cgpacity management, financial management, marketing, and
ordering & provisioning. A software system may suppat multiple products, services,
and business processes. Likewise, every product, service, or business process may
involve many cooperating software systems, exchanging data through the system
interfaces.

Hitl
&

g
E

\)
i T

Figurel. A Typical System Interface Diagram Generated by Enterprise Navigator

Companies frequently need to redesign their software infrastructures in resporse to
changes in the marketplace. Such business reengineering adivities must be performed
with care, however, so that the new architecture will not disrupt existing operations or

increase the operating cost in unrecessary ways. To suppat these goals, system
architeds have long recognzed the need to colled information abou all systems and
interfaces in a repasitory. Architects use this information to draw system interface
diagrams manualy in oder to help them study the existing architecture. Theses
diagrams are updated, publi shed annuwally, and dstributed throughou the businessunits.

The processof manually drawing system interface diagrams is tedious and error-prone: a
simple system interface diagram that shows al system interconnedionsto a single system
could take 30 minutes or more to draw, and the diagram often beaomes obsolete before it
is puldished. Moreover, it isnat easy, through the draw-and-pulish medianism, to get a
system interface diagram based onan ad-hoc query. For example, a manger in charge of
reengineering of billi ng operations may want to generate a diagram that involves all
systems that perform bill cadculations under a particular product or service offer.

This paper describes Enterprise Navigator, a system we have built to allow users to
speafy and exeaute al-hoc queries and generate a system interface diagram
automaticdly. For example, Figure 1 shows a typical diagram generated by Enterprise
Navigator for a particular ad-hoc query.! Each nodk represents a system, and each link
represents an interface between the two conneded systems. Moreover, Enterprise
Navigator alows users to (@) study architecture evolution of a system interface diagram
over time, (b) perform clustering andysis to find substructures embedded in complex
diagrams and (c) perform dominator andysis to determine systems that dominate
information flows. Enterprise Navigator can run as a mllection d stand-alone tods
using a set of database visualization tods cdled CIAO [1], or as an integrated web
service, onwhich we will focusin this paper.

Our work bulds on established research in source wde analysis, graph dawing, and
reverse engineering. Acada|[2] and Chava[3] are examples of reverse engineeing tods
for the analysis of C/C++ and Java programs, respectively. In these systems, source-
code analysis results are stored in a database so that ad-hoc queries can be used to extrad
software structure information withou relying on customized parsers. Visuali zation tods
that employ automatic graph-drawing agorithms [4][5] are frequently employed to help
software engineers comprehend the results of their analyses. Many reverse engineering
tedniques, including tedhniques for software dustering [6] and daminator analysis [7],
have underpinnings based on opiimization theory, statistics, and graph theory.

To date, the aforementioned techniques and tod's have been applied mainly to individual
software systems written in a variety of programming languages. The work described in
this paper takes the next step by showing how the entire software infrastructure of alarge
enterprise such as AT&T can be modeled, queried, analyzed, and visualized when the
infrastructure information is avail able in a database.

The rest of the paper is organized as follows. Section 2 describes the
architecture of this gystem. Section 3 shows how a user interacts with the

L All red system names have been replacel by randomly generated names, and certain interfacenames are
not shown in this diagram to proted proprietary information.

Enterprise Navigator using a case study. Section 4 concludes with summary
and a discusson of future work.

2. Architecture of the Enterprise Navigator

Java e Threaded » Software
Client Socket Java JDBC Infra-
Display | connection Server Connection | structure
Applet > Application [¢ Database

T Pipes ¢
Graph

Manipulation
Programs

Figure2. Enterprise Navigator Architecture

Figure 2 presents a high-level view of the achitedure of the Enterprise Navigator. End-
users interact with the Enterprise Navigator by means of a Java gplet (seeFig. 5). The
applet establi shes a two-way socket connection to a Java gplication runnng on a server
madine. The Java @gplication communicates via a JDBC (Java Data Base
Conredivity)? conredion with a database of software infrastructure spedfics. End-user
visualization requests are passd to the server applicéaion, which formulates an SQL
guery to retrieve the necessary information from the database. The server appli cation then
constructs a system interface graph and gpens a cnnedion to a graph layout program to
pasition the dements of the graph automaticdly. When the layout is complete, the graph
IS ®nt using Java objed seridlization to the gplet, which credes a visuali zation window
and dsplays the requested system interface diagram to the end-user (see Fig. 7). Nodes
and edges can be seleded to view their attributes, the graph dsplay can be dtered based
on those dtributes, and the graph can be returned to the server for additional processng
by graph clustering or graph daminator algorithms.

The glue halding the Enterprise Navigator together is the Java gplication onthe server
maadiine. The cmporents of the Enterprise Navigator linked by the server applicaion
are described in more detail below. Those comporents are the

» infrastructure database, System Profil e Database (SFDB) (Section 2.,

e graphmanipulationand dsplay tool, Grappa (Sedion 2.2,

e graphclustering tod, Bunch (Sedion 2.3, and

e graph daminator todl, Dominator (Sedion 2.9.

2 Visit http://java.sun.com/products/jdbc for more information on JDBC.

2.1 System Profile Database (SPDB)

The underlying database supdying the Enterprise Navigator is the System Profile
Database (SPDB), which contains key information abou all system entiti es and interfaces
within the enterprise of interest. The threemost important tables are the foll owing.

* The System table contains basic information abou each system in the entire business
enterprise. It aso includes such entities as work centers, network elements,
databases, and web sites as well as external systems that participate in flows of data to
or from systems within the enterprise. Information abou a system can include system
type, system name, system owner, business unit owner, system status, phase in/out
dates, Y2K status, and its parent system.

» The Interfacetable gives information abou flows between systems and aher entities
described in the System table. Information abou an interface can include interface
type, the “from” system, the “to” system, interface owner, business unit owner,
transmisson media, transmisson frequency, transmisson mode and interfacestatus.

» The Mappng table links other entities such as products and services or business
functions to systemsin the System table.

In constructing a system interface diagram, the Enterprise Navigator constructs a graph o
the comporents stting the systems as nodes and the interfaces between them as edges.
Additional pieces of information about those entities are stored as attributes to the graph
elements.

2.2 Graph Manipulation and Display (Grappa)

Graph manipulation and dsplay in the Enterprise Navigator is handed by a Java padkage
cdled Grappa[7], which is fredy avail able onthe web.® Grappa.is used in the Enterprise
Navigator both in the dient applet and in the server application. Grappa can be used to
build and manipulate agraph independent of display considerations. Although Grappa
does nat contain layout algorithms, it has methods for simplifying communication with
graph layout programs, particularly the dot layout program [5].3

Mouse interadions with the nodes and edges displayed by Grappa can cause alditional
adions to be triggered. In the Enterprise Navigator, these adions include triggering a
new query spedfic to a seleded element, and viewing or storing additional data dout an
element. Moreover, to study architecture esolution ower time, the gplet could be set up
to color systems according to a reference date and the status of each system at that date.
Thaose that have been phased ou of service or yet to be introduced are wlored dfferently
from those of active systems. Visuadlization d these dhanges helps architeds determine
the dfeds of businessreengineering on various products and services.

Grappais designed to be extensible. The next two sub-sedions describe two applications
that were integrated into the Enterprise Navigator withou re-coding. The server
applicaion ads as a bridge between thase gopli cations and the display applet.

3 Grappa and dot can be downloaded from http://www.reseach.att.com/sw/tools/graphviz/

2.3 Graph Clustering (Bunch)

The Enterprise Navigator uses the Bunch [8] tod to provide a means of clustering
comporentsin the system interface diagrams. Clustering is particularly useful to system
architeds who are trying to urderstand large and complex software infrastructures from
their graph representation.

Bunch accepts, as inpu, a graph and produces, as output, a partitioned version d the
inpu graph into a set of non-overlapping goups (clusters) of nodes. Using Grappa, a
partitioned system interface diagram can be shown as a graph with clusters of nodes
enclosed in rectangles. The Java server application communicaes with Bunch through an
applicaion program interface.

The objedive of Bunch is to partition the software graph so that system entities (nodes)
in the same duster are more dosely related and system entities in different clusters are
relatively independent of each aher. Creaing a meaningful partition o a system
interface diagram, however, is difficult because the number of passble partitions is very
large even for a small graph. Also, small differences between two partitions can yield
very different results. As an example, consider Figure 3a, which presents a graph with a
small number of entities and relationships. The two partitions of the graph presented in
3band X ae very smilar, with orly two nodes (M3 and M4) swapped. In spite of this
seamingly small difference, the partition defined in Figure 3c better captures the high-
level structure of the graph, sinceit groups nodes that are more inter-dependent.

Cluster 1 Cluster 1

p—ap -
~ R
\('luster 2 Cluster 2

\@
* i

Figure 3a An Example
of'a small system
interface graph.

/A

Figure 3b A partition of the Figure 3¢ A better
system nterface graph. partition of the system
iterface graph.

Bunch treds graph clustering as an optimization problem, where the goal is to maximize
an oljedive function that favors the aeation o clusters that exhibit a high degree of
intraredges. Intra-edges are alges between the nodes of the same duster. The same

function penalizes pairs of clusters that exhibit a high degreeof inter-edges. Inter-edges
are alges between nodes that belong to dfferent clusters. A high degree of inter-edgesis
an indication d poa partitioning. Having a large number of inter-edges complicaes
software maintenance because changes to a software system may affed other systems of
the software infrastructure. A low degree of inter-edges is a desirable trait of a system
architedure and is an indicator that the individual clusters are, to a large extent,
independent. Therefore, changes applied to a software system are likely to be locdized to
its cluster, which reduces the likelihood d introducing errorsinto aher systems.

2.4 Graph Dominators (Dominator)

The Enterprise Navigator uses the Dominator todl to provide ameans of determining the
dominators of agraph. In agraph with a selected roat node R, noce X dominates node Y
if every path from R to Y goes through X. We eplain daminators with an example.
When the Enterprise Navigator generates a system interfacediagram, each interface link
between systems represent information flows. For example, in Figure 4a, the link from A
to B means that information flows from A to B. The dominator tree derived from our
infrastructure graph is siown in Figure 4b. A link in the dominator tree between two
nodes means that any flow of information from the root noce (seleaed from the original
graph) to the target node must flow through the source of the link. For example, if A is
the source node and there is a dominator link from B to C, then there is no way to get
from A to C withou going through B. In ather words, if B were to be removed, C would
be ait off from any information derived by A. On the other hand, consider the links from
D to Eand A to E in the origina graph. The direct link from A to E provides a way to
get to E from A withou going through D; therefore D is not adominator of E. In fad, A

is the sole dominator of E.
<> (2 =D

- (o ()
(A 32D
XD €D

Figureda. A System Interface Graph Figure4b. ItsDominator Tree

The root node of a dominator tree represents the system where the flow of information
logicdly begins. In cases where asingle roct is not available, multiple roots can be
chasen from the graph to act together as the global information source.

Our tod uses the dominators algorithm devised by Lengauer and Tarjan [5]. Buchsbaum
et. a [6] provide ahistory of dominators agorithms as well as theoretical improvements
to the Lengauer-Tarjan algorithm. Examples of applicaions for dominator trees in the
Enterprise Navigator include the foll owing.

System evolution sanity checks: Removing a system disconneds al systems dominated
by it (and by extension systems dominated from those, and so on) from the origind

information source. Therefore, systems that are scheduled to be retired shoud na
dominate any systems that are not being retired. The Enterprise Navigator allows this
situationto be chedked visually by uniquely coloring systemsto be retired ona dominator
diagarm.

Qualitative assessments of dependency complexity: Dominator trees that are flat, i.e.,
in which many systems are diredly conrected to the root(s), can represent highly
interconreded systems, because there ae few systems whose removal disconrects the
graph. Such high interconnedivity can be good due to replicated resources for system
dependability, or bad due to umecessary or dugdicated information flows. On the other
hand, dominator trees that are deep, i.e., in which many systems are far from the root(s),
can represent less conneded systems because many systems critically depend on many
others for connedivity from the root. Again, this may be good a bad, depending on the
application.

3. Case Study

To ill ustrate various functions of the Enterprise Navigator, this sdion shows how a user
can construct queries, generate system interface diagrams, perform clustering analysis,
and run the dominator todl, all through aweb interface

Figure 5 shows our query interface presented by the Java gplet. The interface dlows
users to selead systems from different business units, owners (directors),
products/services, business functions, and so on lefore generating a system interface
diagram. The parameters slected by usersin some cdegories determine what choices are
available in ather categories. For example, when a user clicks the Browse button rext to
the Business Unit category, the list of al business units appears. If the user choases
iHome* and then clicks on the Browse button rext to the Product/Service item in Figure
5, Figure 6b will appear and show all products and services under the iHome business
unit only. If the user seledsiPhore and lrowses the systems under that service then the
list of systems appears (Figure 6¢). The user can refine the query further by setting the
value of BusinessProcessand/or BusinessFunction, etc.

The user is freeto pick any system from the list to generate asystem interface diagram.
Figure 7 shows a typicd diagram centered aroundthe system HLJ. The picture dealy
shows that HLJ colleds routing and rating data and then dstributes reference data
(among other things) to gute afew systems.

“ All business unit names, product names, and system names have been replaced with imaginary names to
proted proprietary information.

H =10] x|

File Edit View Go Communicator Help

SPDB Visualization

[About SPDE System Profile Diatabase | Ahout CIAC | About Grappa [Mon Tawa Version]

System Interface Diagrams:

Business Unit: | iHome Browss..

Owiner [John Adams Browse. .

Family: | Browse. .

Product/Service: |iPhone Browse...

Business Process: | Billing Browse...

Business Function: | Bill Calculation Browse. .

Business Task: | Browse..

Status Reference Date: |1999-11-23

PIREREREE

Application ID: || Browse...

Generate System Interface Diagram | Clear Form | -

= == e £ HF B4 L

Figure5. Query Interface of the Enterprise Navigator

24 Select from list.. =] B3 3 Select from list...
Ay Ay Ay

iHome iPhone iBill

iBusiness iChat iCustRec

iMet iCellular iRefund

iLahs iMessenger iProvision

iCahle icanf iMaintenance
iWireless iT igdjustment

Dizmiss I Dismizs i Dismiss I

Figure 6. Lists of (a) Business Units (b) Products and Services under iHOME (c)
Systemsunder iIHOME that are involved with the iPhone service.

Eg,% Spdb¥iewer/Enterprize Havigator Yiewer

oo =
appl [iNet appl | iLabs

CRW QALWHY
appl | iBusiness & ceount Info appl | Home

Vs

IFL
I Customer Data
app TE;J,Psmess appl [iMet
iLabs ™| VEET

HL.J
spnl | iLabs _—f_(HH
TWIIVL

i Customer Data appl | iBusiness 22}
appl | iMet coc
HYEUVIE
appl [iMet Reference Data ¥ appl | iBusiness
HGE TDRII

Customer Data
appl [iLabs v/
NIFKZ appl [iLahs

Customer Data KFET

—_— A
| [+

| [comentto.. | AddLabel| Legend | [Status Shading =] [~ PageLink [Generate application graph]

‘Dismiss

Figure7. System Interface Diagram of HLJ

In every system interface diagram, each noce can be wlored acwmrding to dfferent
attributes of the system. In Figure 7, we use the status siadng scheme, in which abeige
noce indicaes an active system and a gray node indicates that we have insufficient
information abou that system. Using the reference date (199911-23) shown in the
guery interfacepage (Figure 5), a cyan nade indicates that this system is planned and will
be introduced soon and a purple node indicaes that this system has retired. As it is
important to knov how a business reengineaing plan affeds the system architedure, a
system archited can use different reference dates to seehow the system interface diagram
of aparticular product or service has evolved or will become. Ancther shading schemeis
Y2K shadng, in which case nodes are wlored according to whether they are Y2K-
compliant or not. This sheme dlows us to verify the Y2K realiness of any particular
product or servicequickly if the Y2K compliance data ae avail able.

Instead of seleding a single system, a user can simply chocse to generate a system
interface diagram for all systems involved in a product or service (or any systems that
satisfy a particular query), as shown in Figure 1. If the user would like to discover
clusters of systems embedded in such a complex structure, she can invoke the Bunch toadl
to convert the diagram to a dustering diagram as dhown in Figure 8a. The diagram
shows that there are two clusters with a similar architedural pattern: al clusters have a
data hub (within that cluster) that receives data from severa sources and dstributes

processed data to many other destinations.” It's not always easy to identify clusters from
complex system interface diagrams.

If auser is interested in dscovering the dominating information flows gdarting from a
particular system, she can sdled the node ad perform a dominator analysis.
Alternatively, our tod can perform topdogical sorting to rank the nodes and add a virtual
roct to all the top-level nodes before starting the dominator analysis. Figure 8b shows a
dominator treecreded for the system interface diagram of Figure 1 with this method. It
is clea that any attempt to remove the system HLJ will im paa all the other systems that
it dominates snce any information flows to the product or service represented by Figure
1 will have to go through HLJ. Such information can help system architeds plan their
reengineering efforts.

4. Summary and Future Work

Enterprise Navigator is a system that allows oftware achitects to visualize and analyze
the software infrastructures of AT& T. Besides automating the processof drawing system
interface diagrams, it adopts the latest Internet techndogies to allow users to make al-
hoc queries from anywhere in the company and oliain the crrespondng system interface
diagramsinred time. Moreover, the achitedure of the Enterprise Navigator all ows easy
integration d external layout and analysis comporents such as the Dominator and the
Bunch clustering tods. These todls have helped us understand the information flows and
substructures inside a omplex system interface diagram.

The usefulness of the Enterprise Navigator depends heavily on the timeliness of the
underlying data. We ae working on fadliti es that would allow architeds to updite the
architedure data diredly from the graphs to eliminate the delays associated with the old
data mlledion pocess We dso plan to add noe and link operators that would allow
users to examine the crrespondng systems and data transmitted ona link in more detail .
With the addition d operational data like system avail abili ty to the database, we might be
able to perform end-to-end enterprise architedure simulations. Finally, we welcome the
oppatunity to apply the amncept of Enterprise Navigator to ather forms of enterprise data
or data from other companies.

> Figure 7 also shows atypicd cluster following that pattern.

-mamm--:MV_muwmhwwmwaaﬂ
SURURRRUE000

-am---mam-mm i

.l.rp.rr‘.rlr.lflfn.r - ..H. .1..\1‘

e

0

Figure 8 (a) Clustering Diagram and (b) Dominator Diagram generated from the

System Interface Diagram in Figure 1

References

[1] Y. Chen, G. Fowler, E. Koutsofios, and R. Walladch, Ciao: A Graphical Navigator for
Sdtware and Document Repositories, Proceedings of the International Conference on Software
Maintenance, Nice, France, pp.66-75, Oct. 1995.

[2] Y. Chen and E. R. Gansner and E. Koutsofios, A C++ Data Modd Supprting
Reachability Analysis and Dead Code Detection, |IEEE Transactions on Software Engineering,
24(9), September 1998, pp.682-693. Also appeared in Procealings of the Sixth European
Software Engineering Conference and Fifth ACM SIGSOFT Sympaosium on the Foundiions of
Software Engineering, Zurich, Switzerland, September, 1997.

[3] J. Kornand Y. Chen and E. Koutsofios, Chava: Reverse Engineaing and Tradking of
Java Applets, Proceedings of the 6th Working Conference on Reverse Engineering, 1999.

[4] G. Di Battista, P. Eades, R. Tamassa, |. Tallis, GraphDrawing: Algorithms for the
Visualization of Graphs, Prentice Hall, 1999.

[5] E. R. Gansner and E. Koutsofios and S. C. North and K. Vo, A Technique for Drawing
Directed Graphs, IEEE Transadions on Software Engineaing, 193), pp 214230,1993.

[6] T. Lengauer and R. E. Tarjan, A Fast Algorithm for Finding Dominators in a Flowgraph,
ACM Transactions on Programming Languages and Systems, 1(1), pp.121-141, 1979.

[7] N. Barghoui, J. Mocenigo, and W. Lee, Grappa: A Graph Package in Java,
Proceedings of the Fifth International Sympaosium on Graph Drawing, Rome, Italy, pp. 336343,

Sep. 1997.

[8] S. Mancoridis, B. S. Mitchell, Y. Chen, E. R. Gansner, Bunch: A Clustering Tool for the
Rewvery and Maintenance of Software System Sructures, |IEEE Procealings of the International
Conference on Software Maintenance (ICSM'99), Oxford, UK, August, 1999.

[9] A. L. Buchsbaum and H. Kaplan and A. Rogers and J. R. Westbrook, A New, Smpler
Linear-Time Dominators Algorithm, ACM Transactions on Programming Languages and
Systems, 20(6), pp. 12651296, 1998.

